Protein chains coil into alpha-helices and beta-sheet structures. Knowing the timescales and mechanism of formation of these basic structural elements is essential for understanding how proteins fold. For the past 40 years, alpha-helix formation has been extensively investigated in synthetic and natural peptides, including by nanosecond kinetic studies. In contrast, the mechanism of formation of beta structures has not been studied experimentally. The minimal beta-structure element is the beta-hairpin, which is also the basic component of antiparallel beta-sheets. Here we use a nanosecond laser temperature-jump apparatus to study the kinetics of folding a beta-hairpin consisting of 16 amino-acid residues. Folding of the hairpin occurs in 6 micros at room temperature, which is about 30 times slower than the rate of alpha-helix formation. We have developed a simple statistical mechanical model that provides a structural explanation for this result. Our analysis also shows that folding of a beta-hairpin captures much of the basic physics of protein folding, including stabilization by hydrogen bonding and hydrophobic interactions, two-state behaviour, and a funnel-like, partially rugged energy landscape.
How fast can a protein possibly fold? This question has stimulated experimentalists to seek fast folding proteins and to engineer them to fold even faster. Proteins folding at or near the speed limit are prime candidates for all-atom molecular dynamics simulations. They may also have no free energy barrier, allowing the direct observation of intermediate structures on the pathways from the unfolded to the folded state. Both experimental and theoretical approaches predict a speed limit of approximately N/100micros for a generic N-residue single-domain protein, with alpha proteins folding faster than beta or alphabeta. The predicted limits suggest that most known ultrafast folding proteins can be engineered to fold more than ten times faster.
Nanosecond lasers were used to measure the rate of conformational changes in myoglobin after ligand dissociation at ambient temperatures. At low solvent viscosities the rate is independent of viscosity, but at high viscosities it depends on approximately the inverse first power of the viscosity. Kramers theory for unimolecular rate processes can be used to explain this result if the friction term is modified to include protein as well as solvent friction. The theory and experiment suggest that the dominant factor in markedly reducing the rate of conformational changes in myoglobin at low temperatures (less than 200 K) is the very high viscosity (greater than 10(7) centipoise) of the glycerol-water solvent. That is, at low temperatures conformational substates may not be "frozen" so much as "stuck."
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.