Sea ice cover in the Arctic and Antarctic is an important indicator of changes in the climate, with important environmental, economic and security consequences. The complexity of the spatio-temporal dynamics of sea ice makes it difficult to assess the temporal nature of the changes—e.g. linear or exponential—and their precise geographical loci. In this study, Koopman Mode Decomposition (KMD) is applied to satellite data of sea ice concentration for the Northern and Southern hemispheres to gain insight into the temporal and spatial dynamics of the sea ice behavior and to predict future sea ice behavior. We observe spatial modes corresponding to the mean and annual variation of Arctic and Antarctic sea ice concentration and observe decreases in the mean sea ice concentration from early to later periods, as well as corresponding shifts in the locations that undergo significant annual variation in sea ice concentration. We discover exponentially decaying spatial modes in both hemispheres and discuss their precise spatial extent, and also perform predictions of future sea ice concentration. The Koopman operator-based, data-driven decomposition technique gives insight into spatial and temporal dynamics of sea ice concentration not apparent in traditional approaches.
Modern logistics processes and systems can feature extremely complicated dynamics. Agent Based Modeling is emerging as a powerful modeling tool for design, analysis and control of such logistics systems. However, the complexity of the model itself can be overwhelming and mathematical meta-modeling tools are needed that aggregate information and enable fast and accurate decision making and control system design. Here we present Koopman Mode Analysis (KMA) as such a tool. KMA uncovers exponentially growing, decaying or oscillating collective patterns in dynamical data. We apply the methodology to two problems, both of which exhibit a bifurcation in dynamical behavior, but feature very different dynamics: Medical Treatment Facility (MTF) logistics and ship fueling (SF) logistics. The MTF problem features a transition between efficient operation at low casualty rates and inefficient operation beyond a critical casualty rate, while the SF problem features a transition between short mission life at low initial fuel levels and sustained mission beyond a critical initial fuel level. Both bifurcations are detected by analyzing the spectrum of the associated Koopman operator. Mathematical analysis is provided justifying the use of the Dynamic Mode Decomposition algorithm in punctuated linear decay dynamics that is featured in the SF problem.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.