We construct examples of finitely generated infinite simple groups of homeomorphisms of the real line. Equivalently, these are examples of finitely generated simple left (or right) orderable groups. This answers a well known open question of Rhemtulla from 1980 concerning the existence of such groups. In fact, our construction provides a family of continuum many isomorphism types of groups with these properties.2010 Mathematics Subject Classification. Primary: 43A07; Secondary: 20F05.
We give a characterisation of the idempotents of the partition monoid, and use this to enumerate the idempotents in the finite partition, Brauer and partial Brauer monoids, giving several formulae and recursions for the number of idempotents in each monoid as well as various R-, Land D-classes. We also apply our results to determine the number of idempotent basis elements in the finite dimensional partition, Brauer and partial Brauer algebras.
Abstract. We consider the Banach space consisting of continuous functions from an arbitrary uncountable compact metric space, X, into R n . The key question is 'what is the generic dimension of f (X)?' and we consider two different approaches to answering it: Baire category and prevalence.In the Baire category setting we prove that typically the packing and upper box dimensions are as large as possible, n, but find that the behaviour of the Hausdorff, lower box and topological dimensions is considerably more subtle. In fact, they are typically equal to the minimum of n and the topological dimension of X. We also study the typical Hausdorff and packing measures of f (X) and, in particular, give necessary and sufficient conditions for them to be zero, positive and finite, or infinite. It is interesting to compare the Baire category results with results in the prevalence setting. As such we also discuss a result of Dougherty on the prevalent topological dimension of f (X) and give some simple applications concerning the prevalent dimensions of graphs of real-valued continuous functions on compact metric spaces, allowing us to extend a recent result of Bayart and Heurteaux.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.