This study presents the fatigue response of 304 stainless steel foil, cold-rolled to a thickness of 3.2 µm with 87 percent cold work at orientations of 0, 45, and 90 degrees to the direction of rolling. Fatigue specimens were fabricated by laminating a supportive layer of 20-µm polyimide film to one side of the foil and patterning 242 crack initiation features by photolithographic process. Progression of fatigue damage was determined through electrical resistance measurement. The fatigue response was demonstrated to be largely affected by anisotropy existing between the rolling direction and the off-axis orientations. Fatigue cracks that traveled in a direction parallel to the elongated grains (cyclic loads applied at 90-degree orientation to foil rolling direction) had the most fatigue response (undesirable characteristic). The construction of the specimens with thin foil supported by a film backing contributed to high fatigue threshold.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.