Decreased cardiac contractility is a central feature of systolic heart failure. Existing drugs increase cardiac contractility indirectly through signaling cascades but are limited by their mechanism-related adverse effects. To avoid these limitations, we previously developed omecamtiv mecarbil, a small-molecule, direct activator of cardiac myosin. Here, we show it binds to the myosin catalytic domain and operates by an allosteric mechanism to increase the transition rate of myosin into the strongly actin-bound force-generating state. Paradoxically, it inhibits adenosine 5′-triphosphate (ATP) turnover in the absence of actin, which suggests that it stabilizes an actin-bound conformation of myosin. In animal models, omecamtiv mecarbil increases cardiac function by increasing the duration of ejection without changing the rates of contraction. Cardiac myosin activation may provide a new therapeutic approach for systolic heart failure.
Polymerization of actin filaments directed by the Arp2/3 complex supports many types of cellular movements1. However, questions remain regarding the relative contributions of Arp2/3 complex versus other mechanisms of actin filament nucleation to processes such as path finding by neuronal growth cones owing to the lack of simple methods to inhibit Arp2/3 complex reversibly in living cells. Here we describe two classes of small molecules that bind to different sites on Arp2/3 complex and inhibit its ability to nucleate actin filaments. CK-636 binds between Arp2 and Arp3 where it appears to block movement of Arp2 and Arp3 into their active conformation. CK-548 inserts into the hydrophobic core of Arp3 and alters its conformation. Both classes of compounds inhibit formation of actin filament comet tails by Listeria and podosomes by monocytes. Two inhibitors with different mechanisms of action provide a powerful approach for studying Arp2/3 complex in living cells.
Microtubule disassembly at centrosomes is involved in mitotic spindle function. The microtubule-severing protein katanin, a heterodimer of 60 and 80 kDa subunits, was previously purified and shown to localize to centrosomes in vivo. Here we report the sequences and activities of the katanin subunits. p60 is a new member of the AAA family of ATPases, and we show that expressed p60 has microtubule-stimulated ATPase and microtubule-severing activities in the absence of p80. p80 is a novel protein containing WD40 repeats, which are frequently involved in protein-protein interactions. The p80 WD40 domain does not participate in p60 dimerization, but localizes to centrosomes in transfected mammalian cells. These results indicate katanin's activities are segregated into a subunit (p60) that possesses enzymatic activity and a subunit (p80) that targets the enzyme to the centrosome.
Katanin, a member of the AAA adenosine triphosphatase (ATPase) superfamily, uses nucleotide hydrolysis energy to sever and disassemble microtubules. Many AAA enzymes disassemble stable protein-protein complexes, but their mechanisms are not well understood. A fluorescence resonance energy transfer assay demonstrated that the p60 subunit of katanin oligomerized in an adenosine triphosphate (ATP)- and microtubule-dependent manner. Oligomerization increased the affinity of katanin for microtubules and stimulated its ATPase activity. After hydrolysis of ATP, microtubule-bound katanin oligomers disassembled microtubules and then dissociated into free katanin monomers. Coupling a nucleotide-dependent oligomerization cycle to the disassembly of a target protein complex may be a general feature of ATP-hydrolyzing AAA domains.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.