Prostate cancer (PCa), a hormonally-driven cancer, ranks first in incidence and second in cancer related mortality in men in most Western industrialized countries. Androgen and androgen receptor (AR) are the dominant modulators of PCa growth. Over the last two decades multiple advancements in screening, treatment, surveillance and palliative care of PCa have significantly increased quality of life and survival following diagnosis. However, over 20% of patients initially diagnosed with PCa still develop an aggressive and treatment-refractory disease. Prevention or treatment for hormone-refractory PCa using bioactive compounds from marine sponges, mushrooms, and edible plants either as single agents or as adjuvants to existing therapy, has not been clinically successful. Major advancements have been made in the identification, testing and modification of the existing molecular structures of natural products. Additionally, conjugation of these compounds to novel matrices has enhanced their bio-availability; a big step towards bringing natural products to clinical trials. Natural products derived from edible plants (nutraceuticals), and common folk-medicines might offer advantages over synthetic compounds due to their broader range of targets, as compared to mostly single target synthetic anticancer compounds; e.g. kinase inhibitors. The use of synthetic inhibitors or antibodies that target a single aberrant molecule in cancer cells might be in part responsible for emergence of treatment refractory cancers. Nutraceuticals that target AR signaling (epigallocatechin gallate [EGCG], curcumin, and 5α-reductase inhibitors), AR synthesis (ericifolin, capsaicin and others) or AR degradation (betulinic acid, di-indolyl diamine, sulphoraphane, silibinin and others) are prime candidates for use as adjuvant or mono-therapies. Nutraceuticals target multiple pathophysiological mechanisms involved during cancer development and progression and thus have potential to simultaneously inhibit both prostate cancer growth and metastatic progression (e.g., inhibition of angiogenesis, epithelial-mesenchymal transition (EMT) and proliferation). Given their multi-targeting properties along with relatively lower systemic toxicity, these compounds offer significant therapeutic advantages for prevention and treatment of PCa. This review emphasizes the potential application of some of the well-researched natural compounds that target AR for prevention and therapy of PCa.
b-Arrestins are classic attenuators of G-protein-coupled receptor signaling. However, they have multiple roles in cellular physiology, including carcinogenesis. This work shows for the first time that b-arrestins have prognostic significance for predicting metastasis and response to chemotherapy in bladder cancer. b-Arrestin-1 (ARRB1) and b-arrestin-2 (ARRB2) mRNA levels were measured by quantitative RT-PCR in two clinical specimen cohorts (n ¼ 63 and 43). The role of ARRBs in regulating a stem cell-like phenotype and response to chemotherapy treatments was investigated. The consequence of forced expression of ARRBs on tumor growth and response to Gemcitabine in vivo were investigated using bladder tumor xenografts in nude mice. ARRB1 levels were significantly elevated and ARRB2 levels downregulated in cancer tissues compared with normal tissues. In multivariate analysis only ARRB2 was an independent predictor of metastasis, diseasespecific-mortality, and failure to Gemcitabine þ Cisplatin (GþC) chemotherapy; $80% sensitivity and specificity to predict clinical outcome. ARRBs were found to regulate stem cell characteristics in bladder cancer cells. Depletion of ARRB2 resulted in increased cancer stem cell markers but ARRB2 overexpression reduced expression of stem cell markers (CD44, ALDH2, and BMI-1), and increased sensitivity toward Gemcitabine. Overexpression of ARRB2 resulted in reduced tumor growth and increased response to Gemcitabine in tumor xenografts. CRISPR-Cas9-mediated gene-knockout of ARRB1 resulted in the reversal of this aggressive phenotype. ARRBs regulate cancer stem cell-like properties in bladder cancer and are potential prognostic indicators for tumor progression and chemotherapy response.
The PKA‐inhibitor (PKI) family members PKIα, PKIβ, and PKIγ bind with high affinity to PKA and block its kinase activity, modulating the extent, and duration of PKA‐mediated signaling events. While PKA is a well‐known regulator of physiological and oncogenic events, the role of PKI proteins in these pathways has remained elusive. Here, by measuring activation of the MAPK pathway downstream of GPCR‐Gαs‐cAMP signaling, we show that the expression levels of PKI proteins can alter the balance of activation of two major cAMP targets: PKA and EPAC. Our results indicate that PKA maintains repressive control over MAPK signaling as well as a negative feedback on cAMP concentration. Overexpression of PKI and its subsequent repression of PKA dysregulates these signaling pathways, resulting in increased intracellular cAMP, and enhanced activation of EPAC and MAPK. We also find that amplifications of PKIA are common in prostate cancer and are associated with reduced progression free survival. Depletion of PKIA in prostate cancer cells leads to reduced migration, increased sensitivity to anoikis and reduced tumor growth. By altering PKA activity PKI can act as a molecular switch, driving GPCR‐Gαs‐cAMP signaling toward activation of EPAC‐RAP1 and MAPK, ultimately modulating tumor growth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.