Exhausted T cells in cancer and chronic viral infection express distinctive patterns of genes, including sustained expression of programmed cell death protein 1 (PD-1). However, the regulation of gene expression in exhausted T cells is poorly understood. Here, we define the accessible chromatin landscape in exhausted CD8+ T cells and show that it is distinct from functional memory CD8+ T cells. Exhausted CD8+ T cells in humans and a mouse model of chronic viral infection acquire a state-specific epigenetic landscape organized into functional modules of enhancers. Genome editing shows that PD-1 expression is regulated in part by an exhaustion-specific enhancer that contains essential RAR, T-bet, and Sox3 motifs. Functional enhancer maps may offer targets for genome editing that alter gene expression preferentially in exhausted CD8+ T cells.
Profiling microbial community function from metagenomic sequencing data remains a computationally challenging problem. Mapping millions of DNA reads from such samples to reference protein databases requires long run-times, and short read lengths can result in spurious hits to unrelated proteins (loss of specificity). We developed ShortBRED (Short, Better Representative Extract Dataset) to address these challenges, facilitating fast, accurate functional profiling of metagenomic samples. ShortBRED consists of two components: (i) a method that reduces reference proteins of interest to short, highly representative amino acid sequences (“markers”) and (ii) a search step that maps reads to these markers to quantify the relative abundance of their associated proteins. After evaluating ShortBRED on synthetic data, we applied it to profile antibiotic resistance protein families in the gut microbiomes of individuals from the United States, China, Malawi, and Venezuela. Our results support antibiotic resistance as a core function in the human gut microbiome, with tetracycline-resistant ribosomal protection proteins and Class A beta-lactamases being the most widely distributed resistance mechanisms worldwide. ShortBRED markers are applicable to other homology-based search tasks, which we demonstrate here by identifying phylogenetic signatures of antibiotic resistance across more than 3,000 microbial isolate genomes. ShortBRED can be applied to profile a wide variety of protein families of interest; the software, source code, and documentation are available for download at http://huttenhower.sph.harvard.edu/shortbred
Strategies for the design of safer drugs are discussed. The various classes of "soft drugs" are designed to avoid undesired metabolic disposition (primarily various oxidative routes, occurring via possible toxic intermediates) and to be metabolized by a predictable manner with controlled rates. As a first example for the "soft analogue" type drugs, a new class of antimicrobial, surface-active quaternary salts of the type RCOOCHR1--N+ comes from X- was developed. These "soft" quaternary salts are isosteric analogues of known "hard" quaternary surfactants and are characterized by predictable and controllable cleavage (metabolism) to nontoxic components, while showing good activity against a wide range of bacteria. Due to their soft nature (low toxicity), the new antimicrobials are much safer than the conventional, hard analogues.
TNF-alpha converting enzyme (TACE) is a multidomain, membrane-anchored protein that includes a Zn-dependent protease domain. It releases the soluble form of cytokine tumor necrosis factor-alpha (TNF-alpha) from its membrane-bound precursor. TACE is a metalloprotease containing a catalytic glutamic acid, Glu-406, and a Zn(2+) ion ligated to three imidazoles. The protonation states of the active site glutamic acid and inhibitors are important factors in understanding the potency of inhibitors with acidic zinc-ligating groups such as hydroxamic and carboxylic acids. Density functional methods were utilized to compute pK(a) values using a model of the catalytic site of TACE and to predict a concomitant mechanism of binding, consistent with lowering the pK(a) of the bound ligand and raising the pK(a) of the active site Glu-406. Weak acids, such as hydroxamic acids, bind in their neutral form and then transfer an acidic proton to Glu-406. Stronger acids, such as carboxylic acids, bind in their anionic form and require preprotonation of Glu-406. Similar binding events would be expected for other zinc-dependent proteases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.