A simple solution to determine the distributions of queue-lengths at different observation epochs for the model GIX/Geo/c is presented. In the past, various discrete-time queueing models, particularly the multiserver bulk-arrival queues, have been solved using complicated methods that lead to incomplete results. The purpose of this paper is to use the roots method to solve the model GIX/Geo/c that leads to a result that is analytically elegant and computationally efficient. This method works well even for the case when the inter-batch-arrival times follow heavy-tailed distributions. The roots of the underlying characteristic equation form the basis for all distributions of queue-lengths at different time epochs.
This paper deals with a batch arrival infinite-buffer single server queue. The interbatch arrival times are generally distributed and arrivals are occurring in batches of random size. The service process is correlated and its structure is presented through a continuous-time Markovian service process (C-MSP). We obtain the probability density function (p.d.f.) of actual waiting time for the first and an arbitrary customer of an arrival batch. The proposed analysis is based on the roots of the characteristic equations involved in the Laplace-Stieltjes transform (LST) of waiting times in the system for the first, an arbitrary, and the last customer of an arrival batch. The corresponding mean sojourn times in the system may be obtained using these probability density functions or the above LSTs. Numerical results for some variants of the interbatch arrival distribution (Pareto and phase-type) have been presented to show the influence of model parameters on the waiting-time distribution. Finally, a simple computational procedure (through solving a set of simultaneous linear equations) is proposed to obtain the “R” matrix of the corresponding GI/M/1-type Markov chain embedded at a prearrival epoch of a batch.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.