To investigate the effect of altitude on vibrations in a turbocharger, an aircraft compression-ignition engine was operated in both a sea level cell and an altitude chamber up to 25,000 ft (7620 m). The turbocharger was instrumented with a nonintrusive stress measurement system to analyze the frequencies, magnitudes, and critical speeds of the blade bending modes as the ambient pressure, ambient temperature, and engine power varied. The measurements were also compared to data from accelerometers mounted on the compressor housing. At sea level conditions, the largest deflection amplitudes were associated with excitations of the first blade bending mode. These deflections grew in amplitude as the altitude increased and the turbocharger/engine worked harder to produce the required pressure rise and power. There was also evidence of a higher-order mode being excited at elevated altitudes. By understanding the factors contributing to resonance and flutter in aircraft turbomachinery, modeling and prediction tools can be improved to update operating envelopes for current designs and minimize these phenomena in future, aviation-specific designs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.