By addressing the relative stereochemistry of the four acyclic portions via organic synthesis, the complete relative stereochemistry of maitotoxin (MTX) has been established as 1B. The relative stereochemistry of the C.1−C.15 portion was elucidated via a two-phase approach: (1) the synthesis of the eight diastereomers possible for model C, representing the C.1−C.11 portion, and the eight diastereomers possible for model D, representing the C.11−C.15 portion, and the comparison of their proton and carbon NMR characteristics with those of MTX, concluding that 9 and 35 represent the relative stereochemistry of the corresponding portions of MTX; (2) the synthesis of the two remote diastereomers 51 and 52, and comparison of their proton and carbon NMR characteristics with those of MTX, concluding that 51 represents the relative stereochemistry of the C.1−C.15 portion of MTX. The relative stereochemistry of the C.35−C.39, C.63−C.68, and C.134−C.142 acyclic portions was established via (1) the synthesis of the 8, 8, and 16 diastereomers possible for models E, F, and G, respectively, and (2) the comparison of their proton and carbon NMR characteristics with those of MTX, concluding that 81, 117, and 187, respectively, represent the relative stereochemistry of the corresponding portions of MTX. Some biogenetic considerations have been given to speculate on the absolute configuration of MTX. The vicinal proton coupling constants observed for models 51, 81, 117, and 187 were used to elucidate their preferred solution conformation. Assembling the preferred solution conformations found for the four acyclic portions allows one to suggest that the approximate global conformation of MTX is represented by the shape of a hook, with the C.35−C.39 portion being its curvature. MTX appears to be conformationally relatively rigid, except for conformational flexibility around the C.7−C.9 and C.12−C.14 portions. On the basis of the experimental results gained in the current work, coupled with those in the AAL-toxin/fumonisin area, it has been pointed out that the structural properties of 51, 81, 117, 187 and their diastereomers are inherent to the specific stereochemical arrangement of the small substituents on the carbon backbone and are independent from the rest of the molecule. Thus, it has been suggested that each of these diastereomers has the capacity to install a unique structural characteristic through a specific stereochemical arrangement of substituents on the carbon backbone, and that fatty acids and related classes of compounds may be able to carry specific information and serve as functional materials in addition to structural materials.
To search for TNF-alpha (tumor necrosis factor alpha) converting enzyme (TACE) inhibitors, we designed a new class of macrocyclic hydroxamic acids by linking the P1 and P2' residues of acyclic anti-succinate-based hydroxamic acids. A variety of residues including amide, carbamate, alkyl, sulfonamido, Boc-amino, and amino were found to be suitable P1-P2' linkers. With an N-methylamide at P3', the 13-16-membered macrocycles prepared exhibited low micromolar activities in the inhibition of TNF-alpha release from LPS-stimulated human whole blood. Further elaboration in the P3'-P4' area using the cyclophane and cyclic carbamate templates led to the identification of a number of potent analogues with IC(50) values of =0.2 microM in whole blood assay (WBA). Although the P3' area can accommodate a broad array of structurally diversified functional groups including polar residues, hydrophobic residues, and amino and carboxylic acid moieties, in both the cyclophane series and the cyclic carbamate series, a glycine residue at P3' was identified as a critical structural component to achieve both good in vitro potency and good oral activity. With a glycine residue at P3', an N-methylamide at P4' provided the best cyclophane analogue, SL422 (WBA IC(50) = 0.22 microM, LPS-mouse ED(50) = 15 mg/kg, po), whereas a morpholinylamide at P4' afforded the most potent and most orally active cyclic carbamate analogue, SP057 (WBA IC(50) = 0.067 microM, LPS-mouse ED(50) = 2.3 mg/kg, po). Further profiling for SL422 and SP057 showed that these macrocyclic compounds are potent TACE inhibitors, with K(i) values of 12 and 4.2 nM in the porcine TACE assay, and are broad-spectrum MMP inhibitors. Pharmacokinetic studies in beagle dogs revealed that SL422 and SP057 are orally bioavailable, with oral bioavailabilities of 11% and 23%, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.