Well-ordered mesoporous silicate films were prepared by infusion and selective condensation of silicon alkoxides within microphase-separated block copolymer templates dilated with supercritical carbon dioxide. Confinement of metal oxide deposition to specific subdomains of the preorganized template yields high-fidelity, three-dimensional replication of the copolymer morphology, enabling the preparation of structures with multiscale order in a process that closely resembles biomineralization. Ordered mesoporous silicate films were synthesized with dielectric constants as low as 1.8 and excellent mechanical properties. The films survive the chemical-mechanical polishing step required for device manufacturing.
Device-quality copper and nickel films were deposited onto planar and etched silicon substrates by the reduction of soluble organometallic compounds with hydrogen in a supercritical carbon dioxide solution. Exceptional step coverage on complex surfaces and complete filling of high-aspect-ratio features of less than 100 nanometers width were achieved. Nickel was deposited at 60 degrees C by the reduction of bis(cyclopentadienyl)nickel and copper was deposited from either copper(I) or copper(II) compounds onto the native oxide of silicon or metal nitrides with seed layers at temperatures up to 200 degrees C and directly on each surface at temperatures above 250 degrees C. The latter approach provides a single-step means for achieving high-aspect-ratio feature fill necessary for copper interconnect structures in future generations of integrated circuits.
There is a general agreement that the most valid method of measuring peak lower-body mechanical power output (LBPP) in a countermovement jump (CMJ) is by analysis of the corresponding vertical component of the ground reaction force (VGRF)-time history of the jump. However, there is no published standard protocol. The purpose of this study was to establish a standard protocol. The variables necessary to define a valid and reliable CMJ method were: (a) vertical force range, (b) force sampling and integration frequency, (c) method of integration, (d) determination of body weight (BW), and (e) determination of the initiation of the CMJ. Countermovement jumps off a force platform (FP) were performed by 15 male professional rugby players. The 5 variables were then optimized to maximize the reliability and validity of the measure of LBPP. Errors of <1% (p ≤ 0.05) in the measurement of LBPP were obtained using the following specification: (a) 6 times BW (using a 16-bit analog to digital converter), (b) 1,000 Hz, (c) Simpson's rule or the trapezoidal rule, (d) mean VGRF for 1 second of quiet standing immediately before jump signal, and (e) 30 ms before the instant BW ± 5 SD is exceeded after the jump signal. Peak lower-body power output was most sensitive to variables 4 and 5. It was concluded that this study has established a standard protocol for the criterion method of measuring peak power in a CMJ using an FP. As all other estimates and less reliable methods of determining LBPP in a CMJ rely on the FP method for calibration, it is proposed that this protocol be used as the basis of future criterion measures using a FP.
The addition of nanoparticles that selectively hydrogen bond with one of the segments of a block copolymer is shown to induce order in otherwise disordered systems. This enables the fabrication of well-ordered hybrid materials with spherical, cylindrical, or lamellar domains at particle loadings of more than 40%, as evidenced by TEM and SAXS. The approach described is simple and applicable to a wide range of nanoparticles and block copolymers, and it lays the groundwork for the design of cooperatively assembled functional devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.