We employ molecular dynamics (MD) simulation and experiment to investigate the structure, thermodynamics, and transport of N-methyl-N-butylpyrrolidinium bis(trifluoromethylsufonyl)imide ([pyr14][TFSI]), N-methyl-N-propylpyrrolidinium bis(fluorosufonyl)imide ([pyr13][FSI]), and 1-ethyl-3-methylimidazolium boron tetrafluoride ([EMIM][BF4]), as a function of Li-salt mole fraction (0.05 ≤ xLi(+) ≤ 0.33) and temperature (298 K ≤ T ≤ 393 K). Structurally, Li(+) is shown to be solvated by three anion neighbors in [pyr14][TFSI] and four anion neighbors in both [pyr13][FSI] and [EMIM][BF4], and at all levels of xLi(+) we find the presence of lithium aggregates. Pulsed field gradient spin-echo NMR measurements of diffusion and electrochemical impedance spectroscopy measurements of ionic conductivity are made for the neat ionic liquids as well as 0.5 molal solutions of Li-salt in the ionic liquids. Bulk ionic liquid properties (density, diffusion, viscosity, and ionic conductivity) are obtained with MD simulations and show excellent agreement with experiment. While the diffusion exhibits a systematic decrease with increasing xLi(+), the contribution of Li(+) to ionic conductivity increases until reaching a saturation doping level of xLi(+) = 0.10. Comparatively, the Li(+) conductivity of [pyr14][TFSI] is an order of magnitude lower than that of the other liquids, which range between 0.1 and 0.3 mS/cm. Our transport results also demonstrate the necessity of long MD simulation runs (∼200 ns) to converge transport properties at room temperature. The differences in Li(+) transport are reflected in the residence times of Li(+) with the anions (τ(Li/-)), which are revealed to be much larger for [pyr14][TFSI] (up to 100 ns at the highest doping levels) than in either [EMIM][BF4] or [pyr13][FSI]. Finally, to comment on the relative kinetics of Li(+) transport in each liquid, we find that while the net motion of Li(+) with its solvation shell (vehicular) significantly contributes to net diffusion in all liquids, the importance of transport through anion exchange increases at high xLi(+) and in liquids with large anions.
We evaluate the influence of Li-salt doping on the dynamics, capacitance, and structure of three ionic liquid electrolytes, [pyr14][TFSI], [pyr13][FSI], and [EMIM][BF4], using molecular dynamics and polarizable force fields. In this respect, our focus is on the properties of the electric double layer (EDL) formed by the electrolytes at the electrode surface as a function of surface potential (Ψ). The rates of EDL formation are found to be on the order of hundreds of picoseconds and only slightly influenced by the addition of Li salt. The EDLs of three electrolytes are shown to have different energy storage capacities, which we relate to the EDL formation free energy. The differential capacitance obtained from our computations exhibits asymmetry about the potential of zero charge and is consistent with the camel-like profiles noted from mean field theories and experiments on metallic electrodes. The introduction of Li salt reduces the noted asymmetry in the differential capacitance profile. Complementary experimental capacitance measurements have been made on our three electrolytes in their neat forms and with Li salt. The measurements, performed on glassy carbon electrodes, produce U-like profiles, and Li-salt doping is shown to strongly affect capacitance at high magnitudes of Ψ. Differences in the theoretical and experimental shapes and magnitudes of capacitance are rationalized in terms of the electrode surface and pseudocapacitive effects. In both neat and Li-doped liquids, the details of the computational capacitance profile are well described by Ψ-induced changes in the density and molecular orientation of ions in the molecular layer closest to the electrode. Our results suggest that the addition of Li+ induces disorder in the EDL, which originates from the strong binding of anions to Li+. An in-depth analysis of the distribution of Li+ in the EDL reveals that it does not readily enter the molecular layer at the electrode surface, preferring instead to be localized farther away from the surface in the second molecular layer. This behavior is validated through an analysis of the free energy of Li+ solvation as a function of distance from the electrode. Free energy wells are found to coincide with localized concentrations of Li+, the depths of which increase with Ψ and suggest a source of impedance for Li+ to reach the electrode. Finally, we make predictions of the specific energy at ideal graphite utilizing the computed capacitance and previously derived electrochemical windows of the liquids.
A flexible copper-clad lithiophilic current collector was designed for high coulombic efficiency dendrite-free Li metal anodes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.