The Archean Abitibi Subprovince has been divided formally into a Northern Volcanic Zone (NVZ), including the entire northern part of the subprovince, and a Southern Volcanic Zone (SVZ) on the basis of distinct volcano-sedimentary successions, related plutonic suites, and precise U–Pb age determinations. The NVZ has been further formally subdivided into (i) a Monocyclic Volcanic Segment (MVS) composed of an extensive subaqueous basalt plain with scattered felsic volcanic complexes (2730–2725 Ma), interstratified with or overlain by linear volcaniclastic sedimentary basins; and (ii) a Polycyclic Volcanic Segment (PVS) comprising a second mafic–felsic volcanic cycle (2722–2711 Ma) and a sedimentary assemblage with local shoshonitic volcanic rocks.A sequence of deformational events (D1–D6) over a period of 25 Ma in the NVZ is consistent with a major compressional event. North–south shortening was first accommodated by near-vertical east-trending folds and, with continued deformation, was concentrated along major east-trending fault zones and contact-strain aureoles around synvolcanic intrusions, both with a downdip movement. Subsequent dextral strike-slip movement occurred on southeast-trending faults and major east-trending faults which controlled the emplacement of syntectonic plutons (2703–2690 Ma).This study suggests that the NVZ, which is a coherent geotectonic unit, initially formed as a diffuse volcanic arc, represented by the MVZ, in which the northern part, represented by the PVS, evolved into a mature arc as documented by a second volcanic and sedimentary cycle associated with major plutonic accretion. Volcano-sedimentary evolution and associated plutonism, as well as structural evolution, are best explained by a plate-tectonic model involving oblique convergence.
We report new, highly precise, U -Pb and Ar/Ar ages for seven Cretaceous rhyolites, tuffs and granites from across Zealandia spanning a 30 Ma period from arc magmatism to continental break-up. Combined with previously published data, these reveal a strong episodicity in Cretaceous silicic magmatism outside the Median Batholith. 112 Ma tuffs are known only from the Eastern Province in association with a Cretaceous normal fault system. Both 101 and 97 Ma groups of rhyolites and tuffs occur across the entire width and half the length of Zealandia from near the palaeotrench to the continental interior, indicating widespread and effectively instantaneous extension. We attribute an increase in A-type character with time (112-101-97-88-82 Ma) to the progressive thinning of the Zealandia continental crust whereby, with time, there is less opportunity for crustal contamination. Extension directions associated with 101, 97 and 82 Ma magmatism and associated core complex exhumation across Zealandia are all oriented c. 308 oblique to the margin. These observations suggest Zealandia rifting was controlled by either .83 Ma capture of Zealandia by the Pacific Plate and/or ,83 Ma Zealandia-West Antarctica spreading, rather than by laterally migrating triple junctions, slab windows or plume heads.
The northern Canadian Cordillera exhibits coeval accreted arc, subduction zone, ocean basin, and continental margin assemblages that make the region an exceptional place to understand tectonic processes involved in arc‐continent collision. In this study, we use U‐Pb zircon and monazite geochronology to define the timing and provenance record of Late Permian collisional orogeny related to the accretion of the Yukon‐Tanana terrane onto the ancestral North American continental margin of northwestern Canada. New U‐Pb crystallization ages of Permian intrusive rocks in the Klondike District of western Yukon bracket the timing of collision‐related ductile deformation and greenschist‐ to amphibolite‐facies metamorphism on the Yukon‐Tanana terrane between 260 and 252.5 Ma. This tectonothermal event is herein named the Klondike orogeny. Detrital zircon U‐Pb geochronology of Triassic strata provides the sedimentary record of arc‐continent collision and crustal reworking along the Cordilleran margin. Arc‐derived detrital zircons in Early to Middle Triassic (251–235 Ma) strata overlying the ancestral North American continental margin in Yukon suggest that a foreland‐style basin developed adjacent to the Klondike orogen. Regionally extensive Late Triassic (235–200 Ma) strata containing primarily North American detrital zircons form an overlap assemblage that covered the accreted terranes and western North America. The timing of the Klondike orogeny is roughly synchronous with other contractional events along the ∼5000 km strike length of the Cordillera, including the Late Permian‐Early Triassic Sonoman orogeny in Nevada. Global plate reorganization linked to assembly of Pangaea may have been the tectonic engine for late Paleozoic‐early Mesozoic development of the North American Cordillera.
A concordant UPb zircon age of 569.6 ± 5.3 Ma from synrift volcanic rocks of the Hamill Group, southeastern Canadian Cordillera, provides the first direct UPb geochronologic constraint on timing of latest Neoproterozoic rifting along western Laurentia. This age confirms a previous estimate of 575 ± 25 Ma for timing of continental breakup, as derived from the analysis of tectonic subsidence in lower Paleozoic miogeoclinal strata of the North American Cordillera. It also corresponds to the timing of passive margin deposition in the "underlying" Windermere Supergroup of the northern Cordillera, as determined by chemostratigraphic correlations. These timing relationships imply a different breakup history for the northern, as compared to the southern, Cordillera. We propose a model that attempts to explain this paradox of Cordilleran geology. The earlier Neoproterozoic (Windermere-age) rifting event probably records breakup of a continental mass from northern Laurentia followed by development of a passive margin. Accordingly, the Windermere Supergroup of the southern Canadian Cordillera was deposited in an intracontinental rift. The second Neoproterozoic rifting (HamillGog) is interpreted to indicate continental breakup and establishment of a passive margin along western Laurentia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.