Epichloe typhina, a clavicipitaceous systemic phytopathogen, was isolated from two varieties and three hybrids of tall fescue (Festuca arundinaceae). The morphology of the fescue isolates was compared with E. typhina isolated from bent grass (Agrostis perennans). In all isolates, conidia were identical and were typical of E. typhina. In fescue grasses the endophyte failed to produce stromata, but on bent grass the fungus seasonally produced stromata, typical of the genus. Cattle grazing the fescue grasses showed signs of the fescue toxicity syndrome, the E. typhina was found in frequencies of 100%; in grasses from pastures in which cattle showed no signs of the syndrome, frequencies were 0 to 50%. Nutritional factors in vitro were more complex for the isolates from fescue than for the isolate from bent grass. These studies suggested that E. typhina includes biotypes that might be involved in the toxicity syndrome. The fescue biotypes grew poorly on media, and yields were inadequate for toxicity studies. However, the bent grass isolate grew well on three media, and extracts from two of these were toxic to chicken embryos. All isolates produced in vitro the nontoxic fungal steroid tetraenone [ergosta-4,6,8(14),22-tetraen-3-one], which has been isolated
Fumonisins (FB) and AAL-toxin are sphingoid-like compounds produced by several species of fungi associated with plant diseases. In animal cells, both fumonisins produced by Fusarium moniliforme and AAL-toxin produced by Alternaria alternata f. sp. lycopersici inhibit ceramide synthesis, an early biochemical event in the animal diseases associated with consumption of f. moniliforme-contaminated corn. In duckweed (Lemna pausicostata Heglem. 6746), tomato plants (Lycopersicon esculentum Mill), and tobacco callus (Nicotiana fabacum cv Wisconsin), pure FB1 or AAL-toxin caused a marked elevation of phytosphingosine and sphinganine, sphingoid bases normally present in low concentrations. The relative increases were quite different in the three plant systems. Nonetheless, disruption of sphingolipid metabolism was clearly a common feature in plants exposed to FB, or AAL-toxin. Resistant varieties of tomato (AsclAsc) were much less sensitive to toxin-induced increases in free sphinganine. Because free sphingoid bases are precursors to plant "ceramides," their accumulation suggests that the primary biochemical lesion is inhibition of de novo ceramide synthesis and reacylation of free sphingoid bases. Thus, in plants the disease symptoms associated with A. alternata and F. moniliforme infection may be due to disruption of sphingolipid metabolism.
Fusaric acid is a mycotoxin with low to moderate toxicity, which is of concern since it might be synergistic with other cooccurring mycotoxins. Fusaric acid is widespread on corn and corn-based food and feeds and is frequently found in grain, where Fusarium spp. are also isolated. We surveyed 78 strains of Fusarium moniliforme, F. crookwellense, F. subglutinans, F. sambucinum, F. napiforme, F. heterosporum, F. oxysporum, F. solani, and F. proliferatum for their ability to produce fusaric acid. Strains in Fusarium section Liseola also were assigned to mating population of the Gibberella fujikuroi species complex. The fungi could be divided into three classes, low (<100 g/g), moderate (100 to 500 g/g), and high (>500 g/g), based on the amounts of this mycotoxin produced in culture on autoclaved corn. Strains of mating populations C from rice consistently produced moderate to high concentrations of fusaric acid. Two isolates, one each from mating populations C and D, produced fusaric acid in excess of 1,000 g/g of corn. No isolates of any of the Fusarium species examined were negative for the production of fusaric acid on autoclaved corn.
Fescue toxicosis in livestock is due to ingestion of endophyte (Acremonium coenophialum) -infected tall fescue. Understanding mechanisms responsible for decreased calving and growth rates, delayed onset of puberty, and impaired function of corpora lutea in heifers at puberty consuming endophyte-infected fescue is an emerging field in reproductive toxicology. The condition decreases overall productivity through a reduction in reproductive efficiency, reduced weight gains, and lowered milk production. Reproduction in cattle may be further compromised by winter coat retention, increased susceptibility to high environmental temperatures, and light intolerance. Endocrine effects in steers associated with infected tall fescue include reduced prolactin and melatonin secretions and altered neurotransmitter metabolism in the hypothalamus, the pituitary, and pineal glands. Ewes have decreased prolactin and lengthened intervals from introduction of the ram until conception. The endophyte induces prolonged gestation, thickened placentas, large, weak foals, dystocia, and agalactia in pregnant mares. Ergot peptide alkaloids, produced by the endophyte, are suggested as the primary cause of fescue toxicosis. These compounds reduce prolactin, increase body temperatures, and have powerful vasoconstrictive effects. Neurohormonal imbalances of prolactin and melatonin, with restricted blood flow to internal organs, may be the principal causes of aberrant reproduction, growth, and maturation in livestock consuming endophyte-infected tall fescue.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.