We have identified desmoglein 2 (DSG2) as the primary high-affinity receptor used by adenovirus (Ad) serotypes Ad3, Ad7, Ad11, and Ad14. These serotypes represent important human pathogens causing respiratory tract infections. In epithelial cells, adenovirus binding to DSG2 triggers events reminiscent of epithelial-to-mesenchymal transition, leading to transient opening of intercellular junctions. This improves access to receptors, e.g. CD46 and Her2/neu, that are trapped in intercellular junctions. In addition to complete virions, dodecahedral particles (PtDd), formed by viral penton and fiber in excess during viral replication, can trigger DSG2-mediated opening of intercellular junctions as shown by studies with recombinant Ad3 PtDd. Our findings shed light on adenovirus biology and pathogenesis and have implications for cancer therapy.
Squamous epithelial cells have both adherens junctions and desmosomes. The ability of these cells to organize the desmosomal proteins into a functional structure depends upon their ability first to organize an adherens junction. Since the adherens junction and the desmosome are separate structures with different molecular make up, it is not immediately obvious why formation of an adherens junction is a prerequisite for the formation of a desmosome. The adherens junction is composed of a transmembrane classical cadherin (E-cadherin and/or P-cadherin in squamous epithelial cells) linked to either β-catenin or plakoglobin, which is linked to α-catenin, which is linked to the actin cytoskeleton. The desmosome is composed of transmembrane proteins of the broad cadherin family (desmogleins and desmocollins) that are linked to the intermediate filament cytoskeleton, presumably through plakoglobin and desmoplakin. To begin to study the role of adherens junctions in the assembly of desmosomes, we produced an epithelial cell line that does not express classical cadherins and hence is unable to organize desmosomes, even though it retains the requisite desmosomal components. Transfection of E-cadherin and/or P-cadherin into this cell line did not restore the ability to organize desmosomes; however, overexpression of plakoglobin, along with E-cadherin, did permit desmosome organization. These data suggest that plakoglobin, which is the only known common component to both adherens junctions and desmosomes, must be linked to E-cadherin in the adherens junction before the cell can begin to assemble desmosomal components at regions of cell–cell contact. Although adherens junctions can form in the absence of plakoglobin, making use only of β-catenin, such junctions cannot support the formation of desmosomes. Thus, we speculate that plakoglobin plays a signaling role in desmosome organization.
Plakophilins (PKPs) are armadillo family members related to the classical cadherin-associated protein p120ctn. PKPs localize to the cytoplasmic plaque of intercellular junctions and participate in linking the intermediate filament (IF)-binding protein desmoplakin (DP) to desmosomal cadherins. In response to cell–cell contact, PKP2 associates with DP in plaque precursors that form in the cytoplasm and translocate to nascent desmosomes. Here, we provide evidence that PKP2 governs DP assembly dynamics by scaffolding a DP–PKP2–protein kinase Cα (PKCα) complex, which is disrupted by PKP2 knockdown. The behavior of a phosphorylation-deficient DP mutant that associates more tightly with IF is mimicked by PKP2 and PKCα knockdown and PKC pharmacological inhibition, all of which impair junction assembly. PKP2 knockdown is accompanied by increased phosphorylation of PKC substrates, raising the possibility that global alterations in PKC signaling may contribute to pathogenesis of congenital defects caused by PKP2 deficiency.
Cadherins are calcium-dependent glycoproteins that function as cell-cell adhesion molecules and are linked to the actin cytoskeleton via catenins. Newly synthesized cadherins contain a prosequence that must be proteolytically removed to generate a functional adhesion molecule. The goal of this study was to examine the proteolytic processing of N-cadherin and the assembly of the cadherin-catenin complex in cells that express endogenous N-cadherin. A monoclonal antibody specific for the proregion of human N-cadherin was generated and used to examine N-cadherin processing. Our data show that newly synthesized proN-cadherin is phosphorylated and proteolytically processed prior to transport to the plasma membrane. In addition, we show that -catenin and plakoglobin associate only with phosphorylated proN-cadherin, whereas p120 ctn can associate with both phosphorylated and non-phosphorylated proN-cadherin. Immunoprecipitations using anti-proNcadherin showed that cadherin-catenin complexes are assembled prior to localization at the plasma membrane. These data suggest that a core N-cadherin-catenin complex assembles in the endoplasmic reticulum or Golgi compartment and is transported to the plasma membrane where linkage to the actin cytoskeleton can be established.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.