Abstract-The maintenance works (e.g. inspection, repair) of aero-engines while still attached on the airframes requires a desirable approach since this can significantly shorten both the time and cost of such interventions as the aerospace industry commonly operates based on the generic concept "power by the hour". However, navigating and performing a multi-axis movement of an end-effector in a very constrained environment such as gas turbine engines is a challenging task. This paper reports on the development of a highly flexible slender (i.e. low diameter-to-length ratios) continuum robot of 25 degrees of freedom capable to uncoil from a drum to provide the feeding motion needed to navigate into crammed environments and then perform, with its last 6 DoF, complex trajectories with a camera equipped machining end-effector for allowing in-situ interventions at a low-pressure compressor of a gas turbine engine. This continuum robot is a compact system and presents a set of innovative mechatronics solutions such as: (i) twin commanding cables to minimise the number of actuators; (ii) twin compliant joints to enable large bending angles (±90deg) arranged on a tapered structure (start from 40mm to 13mm at its end); (iii) feeding motion provided by a rotating drum for coiling/uncoiling the continuum robot; (iv) machining end-effector equipped with vision system. To be able to achieve the in-situ maintenance tasks, a set of innovative control algorithms to enable the navigation and end-effector path generation have been developed and implemented. Finally, the continuum robot has been tested both for navigation and movement of the end-effector against a specified target within a gas turbine engine mock-up proving that: (i) max. deviations in navigation from the desired path (1000mm length with bends between 45° and 90°) are ±10 mm; (ii) max. errors in positioning the end-effector against a target situated at the end of navigation path is 1 mm. Thus, this paper presents a compact continuum robot that could be considered as a step forward in providing aero-engine manufacturers with a solution to perform complex tasks in an invasive manner.
A twisting problem is identified from the central located flexible backbone continuum robot. Regarding this problem, a design solution is required to mechanically minimize this twisting angle along the backbone. Further, the error caused by the kinematic assumption of previous works is identified as well, which requires a kinematic solution to minimize. The scope of this paper is to introduce, describe and teste a novel design of continuum robot which has a twin-pivot compliant joint construction that minimizes the twisting around its axis. A kinematics model is introduced which can be applied to a wide range of twin-pivot construction with two pairs of cables per section design. And according to this model, the approach for minimising the kinematic error is developed. Furthermore, based on the geometry and material property of compliant joint, the work volumes for single/three-section continuum robot are presented, respectively. The kinematic analysis has been verified by a three-section prototype of continuum robot and adequate accuracy and repeatability tests carried out. And in the test, the system generates relatively small twisting angles when a range of end loads is applied at the end of the arm. Utilising the concept presented in this paper, it is possible to develop a continuum robot which can minimize the twisting angle and be accurately controlled. In this paper, a novel design of continuum robot which has a twin-pivot compliant joint construction that minimizes the twisting around its axis is introduced, described and tested. A kinematics model is introduced which can be applied to a wide range of twin-pivot construction with two pairs of cables per section design. Furthermore, based on the geometry and material property of compliant joint, the work volumes for single/three-section continuum robot are presented, respectively. Finally, the kinematic analysis has been verified by a three-section prototype of continuum and adequate accuracy and repeatability tests carried out.
SummaryThis research is concerned with autogenous welding of 316L stainless steel and the microstructure generated by such a process. Autogenous welding does not require a filler material and in this case relies on an initial shallow melt phase to maintain a conduction limited weld. Essentially, a high power laser beam traverses the substrate, with the beam shaped by conventional optics, which produces a Gaussian irradiance distribution; or with a diffractive optical element, used to produce a uniform irradiance distribution.Initial results have shown that due to the nature of the heating cycle, complex microstructures are developed. These fine, complicated microstructures cannot be satisfactorily resolved and quantified using standard optical microscopy techniques. Electron backscatter diffraction (EBSD) and energy dispersive spectroscopy (EDS) have been carried out on a number of different microstructures prepared using a range of welding parameters. It is demonstrated that the simultaneous determination of the chemistry and crystallography is a very useful tool for rapid identification of the different phases formed on solidification as a consequence of varying welding procedures.
In-situ repair/maintenance is critical for the key industry sectors (e.g. aerospace, nuclear), which require prompt interventions. The paper reports on a tendon driven continuum robotic machine tool with high manoeuvrability in navigating and machining within confined workspaces. The design reveals the main working principles of the robotic machine tool, followed by its calibration method and a new kinematics compensation approach to account for the deformation of the actuation cables that is that the key enabler for its use in machining tasks, which is based on the geometry of the actuation system. Finally, a set of experimental trials were conducted to show its ability to perform in-situ accurate machining operations in a mock-up aerospace scenario.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.