Hyperpolarization (HP) of nuclear spins is critical for ultrasensitive nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI). We demonstrate an approach for >1500-fold enhancement of key small-molecule metabolites: 1-(13)C-pyruvic acid, 1-(13)C-sodium lactate, and 1-(13)C-acetic acid. The (13)C solution NMR signal of pyruvic acid was enhanced 1600-fold at B = 1 T and 40 °C by pre-polarizing at 14 T and ∼2.3 K. This "brute-force" approach uses only field and temperature to generate HP. The noted 1 T observation field is appropriate for benchtop NMR and near the typical 1.5 T of MRI, whereas high-field observation scales enhancement as 1/B. Our brute-force process ejects the frozen, solid sample from the low-T, high-B polarizer, passing it through low field (B < 100 G) to facilitate "thermal mixing". That equilibrates (1)H and (13)C in hundreds of milliseconds, providing (13)C HP from (1)H Boltzmann polarization attained at high B/T. The ejected sample arrives at a room-temperature, permanent magnet array, where rapid dissolution with 40 °C water yields HP solute. Transfer to a 1 T NMR system yields (13)C signals with enhancements at 80% of ideal for noted polarizing conditions. High-resolution NMR of the same product at 9.4 T had consistent enhancement plus resolution of (13)C shifts and J-couplings for pyruvic acid and its hydrate. Comparable HP was achieved with frozen aqueous lactate, plus notable enhancement of acetic acid, demonstrating broader applicability for small-molecule NMR and metabolic MRI. Brute-force avoids co-solvated free-radicals and microwaves that are essential to competing methods. Here, unadulterated samples obviate concerns about downstream purity and also exhibit slow solid-state spin relaxation, favorable for transporting HP samples.
SummaryThe enzyme triosephosphate isomerase (TIM) is a model of catalytic efficiency. The 11-residue loop 6 at the TIM active site plays a major role in this enzymatic prowess. The loop moves between open and closed states, which facilitate substrate access and catalysis, respectively. The N-and C-terminal hinges of loop 6 control this motion. Here, we detail flexibility requirements for hinges in a comparative solution NMR study of wild-type (WT) TIM and a quintuple mutant (PGG/GGG). The latter contained glycine substitutions in the N-terminal hinge at Val167 and Trp168, which follow the essential Pro166, and in the C-terminal hinge at Lys174, Thr175, and Ala176. Previous work demonstrated that PGG/GGG has a 10-fold higher K m value and 10 3 -fold reduced k cat relative to WT with either [D]-glyceraldehyde 3-phosphate or dihyrdroxyacetone phosphate as substrate. Our NMR results explain this in terms of altered loop-6 dynamics in PGG/GGG. In the mutant, loop 6 exhibits conformational heterogeneity with corresponding motional rates < 750 s −1 that are an order of magnitude slower than the natural WT loop-6 motion. At the same time, ns-timescale motions of loop 6 are greatly enhanced in the mutant relative to WT. These differences from WT behavior occur in both apo PGG/GGG and in the form bound to the reaction-intermediate analog, 2-phosphoglycolate (2-PGA). In addition, as indicated by 1 H, 15 N and 13 CO chemical-shifts, the glycine substitutions (a) diminished the enzyme's response to ligand, and (b) induced structural perturbations in apo and 2-PGA-bound forms of TIM that are atypical of those observed in WT. Altogether, these data show that PGG/GGG exists in multiple conformations that are not fully competent for ligand binding or catalysis. These experiments elucidate an important principle of catalytic hinge design in proteins: structural rigidity is essential for focused motional freedom of active-site loops.
Solution nuclear magnetic resonance (NMR) spectroscopy is unique in its ability to elucidate the details of atomic-level structural and dynamical properties of biological macromolecules under native-like conditions. Recent advances in NMR techniques and protein sample preparation now allow comprehensive investigation of protein dynamics over timescales ranging 14 orders of magnitude at nearly every atomic site. Thus, solution NMR is poised to reveal aspects of the physico-chemical properties that govern the ensemble distribution of protein conformers and the dynamics of their interconversion. We review these advances as well as their recent application to the study of proteins.
This work examines the robustness of fitting of parameters describing conformational exchange (k(ex), p(a/b), and Deltaomega) processes from CPMG relaxation dispersion data. We have analyzed the equations describing conformational exchange processes for the intrinsic inter-dependence of their parameters that leads to the existence of multiple equivalent solutions, which equally satisfy the experimental data. We have used Monte-Carlo simulations and fitting to the synthetic data sets as well as the direct 3-D mapping of the parameter space of k(ex), p(a/b), and Deltaomega to quantitatively assess the degree of the parameter inter-dependence. The demonstrated high correlation between parameters can preclude accurate dynamics parameter estimation from NMR spin-relaxation data obtained at a single static magnetic field. The strong parameter inter-dependence can readily be overcome through acquisition of spin-relaxation data at more than one static magnetic field thereby allowing accurate assessment of conformational exchange properties.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.