Soft-templated mesoporous carbons and activated mesoporous carbons were fluorinated using elemental fluorine between room temperature and 235 °C. The mesoporous carbons were prepared via self-assembly synthesis of phloroglucinol–formaldehyde as a carbon precursor in the presence of triblock ethylene oxide–propylene oxide–ethylene oxide copolymer BASF Pluronic F127 as the template. The F/C ratios ranged from ∼0.15 to 0.75 according to gravimetric, energy dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy analysis. Materials have mesopore diameters up to 11 nm and specific surface areas as high as 850 m2 g–1 after fluorination as calculated from nitrogen adsorption isotherms at −196 °C. Furthermore, the materials exhibit higher discharge potentials and energy and power densities as well as faster reaction kinetics under high current densities than commercial carbon fluorides with similar fluorine contents when tested as cathodes for Li/CF
x
batteries.
An electron capture (EC) ionization mechanism has been found to be highly efficient in negative-ion atmospheric pressure photoionization (APPI) for the analysis of compounds with positive electron affinity (EA). Using negative-ion APPI, we first report the sensitive detection of natural electrophores with limited polarity, such as fullerenes and perfluorinated compounds, by mass spectrometry (MS). Using direct infusion on a quadrupole time-of-flight (QTOF) mass spectrometer, the limits of detection (LODs) for C(60) and perfluoromethylcyclohexane were determined to be 0.15 pg (0.2 fmol) and 1 femtoliter (fL) ( approximately 1.5 pg or 4.3 fmol), respectively. As the EA of the analyte increases, the detection sensitivity is enhanced. Making use of the accurate mass measurement capability of the QTOF mass spectrometer, we were able to investigate the elemental composition of the ions in each spectrum and attribute the observed high sensitivity to an EC-initiated ionization process. The proposed EC ionization mechanism is further supported by the observation of a dissociative EC reaction of pentafluorobenzyl (PFB)-derivatized phenols. The analysis of phenols by EC-APPI of their PFB derivatives resulted in very high sensitivity, with the lowest reported LOD of approximately 0.17 pg (0.5 fmol) being for 2,4-dinitrophenol. For future LC/EC-APPI-MS applications, the effect of additives and solvents on sensitivity was also tested and reported.
We report a direct fluorination method under fluorine gas atmosphere using a fluidized bed reactor for converting nanophase iron oxide (n-Fe2O3) to an electrochemically stable and higher energy density iron oxyfluoride/fluoride phase. Interestingly, no noticeable bulk iron oxyfluoride phase (FeOF) phase was observed even at fluorination temperature close to 300 °C. Instead, at fluorination temperatures below 250 °C, scanning transmission electron microscopy coupled with electron energy loss spectroscopy (STEM-EELS) and X-ray photoelectron spectroscopy (XPS) analysis showed surface fluorination with nominal composition, Fe2O3-xF2x (x < 1). At fluorination temperatures of 275 °C, STEM-EELS results showed porous interconnected nanodomains of FeF3 and Fe2O3 coexisting within the same particle, and overall the particles become less dense after fluorination. We performed potentiometric intermittent titration and electrochemical impedance spectroscopy studies to understand the lithium diffusion (or apparent diffusion) in both the oxyfluoride and mixed phase FeF3 + Fe2O3 composition, and correlate the results to their electrochemical performance. Further, we analyze from a thermodynamical perspective, the observed formation of the majority fluoride phase (77% FeF3) and the absence of the expected oxyfluoride phase based on the relative formation energies of oxide, fluoride, and oxyfluorides.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.