The importance of reactive metabolites in the pathogenesis of drug-induced toxicity has been a focus of research interest since pioneering investigations in the 1950s revealed the link between toxic metabolites and chemical carcinogenesis. There is now a great deal of evidence that shows that reactive metabolites are formed from drugs known to cause hepatotoxicity, but how these toxic species initiate and propagate tissue damage is still poorly understood. This review summarizes the evidence for reactive metabolite formation from hepatotoxic drugs, such as acetaminophen, tamoxifen, diclofenac, and troglitazone, and the current hypotheses of how this leads to liver injury. Several hepatic proteins can be modified by reactive metabolites, but this in general equates poorly with the extent of toxicity. Much more important may be the identification of the critical proteins modified by these toxic species and how this alters their function. It is also important to note that the toxicity of reactive metabolites may be mediated by noncovalent binding mechanisms, which may also have profound effects on normal liver physiology. Technological developments in the wake of the genomic revolution now provide unprecedented power to characterize and quantify covalent modification of individual target proteins and their functional consequences; such information should dramatically improve our understanding of drug-induced hepatotoxic reactions.
Acyl glucuronidation is the major metabolic conjugation reaction of most carboxylic acid drugs in mammals. The physiological consequences of this biotransformation have been investigated incompletely but include effects on drug metabolism, protein binding, distribution and clearance that impact upon pharmacological and toxicological outcomes. In marked contrast, the exceptional but widely disparate chemical reactivity of acyl glucuronides has attracted far greater attention. Specifically, the complex transacylation and glycation reactions with proteins have provoked much inconclusive debate over the safety of drugs metabolised to acyl glucuronides. It has been hypothesised that these covalent modifications could initiate idiosyncratic adverse drug reactions. However, despite a large body of in vitro data on the reactions of acyl glucuronides with protein, evidence for adduct formation from acyl glucuronides in vivo is limited and potentially ambiguous. The causal connection of protein adduction to adverse drug reactions remains uncertain. This review has assessed the intrinsic reactivity, metabolic stability and pharmacokinetic properties of acyl glucuronides in the context of physiological, pharmacological and toxicological perspectives. Although numerous experiments have characterised the reactions of acyl glucuronides with proteins, these might be attenuated substantially in vivo by rapid clearance of the conjugates. Consequently, to delineate a relationship between acyl glucuronide formation and toxicological phenomena, detailed pharmacokinetic analysis of systemic exposure to the acyl glucuronide should be undertaken adjacent to determining protein adduct concentrations in vivo. Further investigation is required to ascertain whether acyl glucuronide clearance is sufficient to prevent covalent modification of endogenous proteins and consequentially a potential immunological response.
Artemisinin and its derivatives are currently recommended as first-line antimalarials in regions where Plasmodium falciparum is resistant to traditional drugs. The cytotoxic activity of these endoperoxides toward rapidly dividing human carcinoma cells and cell lines has been reported, and it is hypothesized that activation of the endoperoxide bridge by an iron(II) species, to form C-centered radicals, is essential for cytotoxicity. The studies described here have utilized artemisinin derivatives, dihydroartemisinin, 10-(p-bromophenoxy)dihydroartemisinin, and 10-(p-fluorophenoxy)dihydroartemisinin, to determine the chemistry of endoperoxide bridge activation to reactive intermediates responsible for initiating cell death and to elucidate the molecular mechanism of cell death. These studies have demonstrated the selective cytotoxic activity of the endoperoxides toward leukemia cell lines (HL-60 and Jurkat) over quiescent peripheral blood mononuclear cells. Deoxy-10-(p-fluorophenoxy)dihydroartemisinin, which lacks the endoperoxide bridge, was 50-and 130-fold less active in HL-60 and Jurkat cells, respectively, confirming the importance of this functional group for cytotoxicity. We have shown that chemical activation is responsible for cytotoxicity by using liquid chromatography-mass spectrometry analysis to monitor endoperoxide activation by measurement of a stable rearrangement product of endoperoxide-derived radicals, which was formed in sensitive HL-60 cells but not in insensitive peripheral blood mononuclear cells. In HL-60 cells the endoperoxides induce caspase-dependent apoptotic cell death characterized by concentration-and time-dependent mitochondrial membrane depolarization, activation of caspases-3 and -7, sub-G 0 /G 1 DNA formation, and attenuation by benzyloxycarbonyl-VAD-fluoromethyl ketone, a caspase inhibitor. Overall, these results indicate that endoperoxide-induced cell death is a consequence of activation of the endoperoxide bridge to radical species, which triggers caspase-dependent apoptosis.
Amodiaquine (AQ) (2) is a 4-aminoquinoline antimalarial that can cause adverse side effects including agranulocytosis and liver damage. The observed drug toxicity is believed to involve the formation of an electrophilic metabolite, amodiaquine quinoneimine (AQQI), which can bind to cellular macromolecules and initiate hypersensitivity reactions. We proposed that interchange of the 3' hydroxyl and the 4' Mannich side-chain function of amodiaquine would provide a new series of analogues that cannot form toxic quinoneimine metabolites via cytochrome P450-mediated metabolism. By a simple two-step procedure, 10 isomeric amodiaquine analogues were prepared and subsequently examined against the chloroquine resistant K1 and sensitive HB3 strains of Plasmodium falciparum in vitro. Several analogues displayed potent antimalarial activity against both strains. On the basis of the results of in vitro testing, isoquine (ISQ1 (3a)) (IC(50) = 6.01 nM +/- 8.0 versus K1 strain), the direct isomer of amodiaquine, was selected for in vivo antimalarial assessment. The potent in vitro antimalarial activity of isoquine was translated into excellent oral in vivo ED(50) activity of 1.6 and 3.7 mg/kg against the P. yoelii NS strain compared to 7.9 and 7.4 mg/kg for amodiaquine. Subsequent metabolism studies in the rat model demonstrated that isoquine does not undergo in vivo bioactivation, as evidenced by the complete lack of glutathione metabolites in bile. In sharp contrast to amodiaquine, isoquine (and Phase I metabolites) undergoes clearance by Phase II glucuronidation. On the basis of these promising initial studies, isoquine (ISQ1 (3a)) represents a new second generation lead worthy of further investigation as a cost-effective and potentially safer alternative to amodiaquine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.