Case-parent trios were used in a genome wide association study of cleft lip with/without cleft palate (CL/P). SNPs near two genes not previously associated with CL/P [MAFB: most significant SNP rs13041247, with odds ratio per minor allele OR=0.704; 95%CI=0.635,0.778; p=2.05*10 −11 ; and ABCA4: most significant SNP rs560426, with OR=1.432; 95%CI=1.292,1.587; p=5.70*10 −12 ] and two previously identified regions (chr. 8q24 and IRF6) attained genome wide significance. Stratifying trios into European and Asian ancestry groups revealed differences in statistical significance, although estimated effect sizes were similar. Replication studies from several populations showed confirming evidence, with families of European ancestry giving stronger evidence for markers in 8q24 while Asian families showed stronger evidence for MAFB and ABCA4. Expression studies support a role for MAFB in palate development.Corresponding author: THB (tbeaty@jhsph.edu). NIH Public Access Author ManuscriptNat Genet. Author manuscript; available in PMC 2010 September 17. Published in final edited form as:Nat Genet. 2010 June ; 42(6): 525-529. doi:10.1038/ng.580. NIH-PA Author ManuscriptNIH-PA Author Manuscript NIH-PA Author ManuscriptCleft lip with or without cleft palate (CL/P) is a common human birth defect with documented genetic and environmental risk factors 1 . While CL/P can occur in many Mendelian malformation syndromes, the isolated, non-syndromic form constitutes 70% of all cases2. Evidence for genetic control of CL/P is compelling: recurrence risks are 20-30 times greater than population prevalences3 , 4 and both twin and family studies 5 suggest a major role for genes, Mutations in IRF6 cause VanderWoude syndrome, the most common Mendelian syndrome including CL/P, and markers in IRF6 have repeatedly shown evidence of association with isolated, non-syndromic CL/P 6-9 . An allele disrupting an AP2 binding site near IRF6 showed particularly strong evidence among European CL families, although multiple risk alleles are likely 10 .Birnbaum et al. 11 conducted a case-control genome wide association study (GWAS) in Germany and found significant evidence of association with markers in 8q24.21, and a US case-control GWAS confirmed this region 12 , with rs987525 being the most significant marker in both studies. Here we present a GWAS using a case-parent trio design in a consortium drawing cases from Europe, the US, China, Taiwan, Singapore, Korea and the Philippines. This design has the advantage of being robust to confounding due to population stratification, which is important when cases from diverse populations are combined. ResultsBecause these case-parent trios came from different populations (Table 1), we conducted a principal components analysis (PCA) on all parents to document genetic variation in our consortium (Supplementary Figure 1). Approximately 50% of parents could be classified as Asian and 45% as European, with remaining parents being of African or "other" ancestry (including mixed). Transmission disequilibrium tests...
Maternal insulin-dependent diabetes has long been associated with congenital malformations. As other causes of mortality and morbidity have been eliminated or reduced, malformations have become increasingly prominent. Although there is not universal agreement, the great majority of investigators find a two-to threefold increase in malformations in infants of insulin-dependent diabetic mothers. This increase is not seen in infants of gestational diabetics. It probably is not present in women whose diabetes can be controlled by diet or oral hypoglycemic agents. The risk does not appear to be primarily genetic since diabetic fathers do not have an increased number of malformed offspring. Most studies show a generalized increase in malformations involving multiple organ systems. Multiple malformations seem to be more common in diabetic than nondiabetic infants. Caudal regression has the strongest association with diabetes, occurring roughly 200 times more frequently in infants of diabetic mothers than in other infants. The teratogenic mechanism in diabetes is not known. Hyperglycemia may be important but human studies focusing on the period of organogenesis are lacking. Hypoglycemia has also been suggested based mainly on animal experiments. Insulin appears unlikely. Numerous other factors including vascular disease, hypoxia, ketone and amino acid abnormalities, glycosylation of proteins, or hormone imbalances could be teratogenic. None has been studied in sufficient detail to make a judgment. A large-scale prospective study is required to determine early fetal loss rates, correlate metabolic status during organogenesis with outcome, and assess the effect of diabetic control on malformation rates.An association between diabetes mellitus in women and congenital malformations in their offspring has been suspected since the nineteenth century. In 1885, LeCorché reported two infants of diabetic mothers with hydrocephalus. The prognosis for diabetic women prior to the discovery of insulin was poor, however, and few women delivered successfully. It was not until better control of hyperglycemia, close monitoring in the last months of pregnancy, and early delivery for fetal distress were instituted that salvage rates in diabetic pregnancies improved substantially. At this point, the full impact of congenital malformations was appreciated.Despite better management, the incidence of congenital malformations has not decreased over the past 25 years (Soler, '76 NIH-PA Author ManuscriptNIH-PA Author Manuscript NIH-PA Author Manuscript distress syndrome as the leading cause of death in some diabetes centers (Soler, '76). This has stimulated investigators to examine the relationship between maternal diabetes and malformations. EVIDENCE THAT INFANTS OF DIABETIC MOTHERS HAVE HIGHER MALFORMATION RATESEvidence that infants of diabetic mothers have higher malformation rates has accumulated over the last several decades. Initially, centers reporting their experience with diabetic pregnancies noted high malformation rates in the...
Women who take folic acid periconceptionally reduce their risk of having a child with a neural tube defect (NTD) by >50%. A variant form of methylenetetrahydrofolate reductase (MTHFR) (677C-->T) is a known risk factor for NTDs, but the prevalence of the risk genotype explains only a small portion of the protective effect of folic acid. This has prompted the search for additional NTD-associated variants in folate-metabolism enzymes. We have analyzed five potential single-nucleotide polymorphisms (SNPs) in the cytoplasmic, nicotinamide adenine dinucleotide phosphate-dependent, trifunctional enzyme methylenetetrahydrofolate dehydrogenase/methenyltetrahydrofolate cyclohydrolase/formyltetrahydrofolate synthetase (MTHFD1) for an association with NTDs in the Irish population. One SNP, R653Q, in this gene appears to be associated with NTD risk. We observed an excess of the MTHFD1 "Q" allele in the mothers of children with NTD, compared with control individuals. This excess was driven by the overrepresentation of QQ homozygotes in the mothers of children with NTD compared with control individuals (odds ratio 1.52 [95% confidence interval 1.16-1.99], P=.003). We conclude that genetic variation in the MTHFD1 gene is associated with an increase in the genetically determined risk that a woman will bear a child with NTD and that the gene may be associated with decreased embryo survival.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.