We conducted a large population-based survey of fragile X (FRAXA) syndrome in ethnically diverse metropolitan Atlanta. The eligible study population consisted of public school children, aged 7-10 years, in special education-needs (SEN) classes. The purpose of the study was to estimate the prevalence among whites and, for the first time, African Americans, among a non-clinically referred population. At present, 5 males with FRAXA syndrome (4 whites and 1 African American), among 1,979 tested males, and no females, among 872 tested females, were identified. All males with FRAXA syndrome were mentally retarded and had been diagnosed previously. The prevalence for FRAXA syndrome was estimated to be 1/3,460 (confidence interval [CI] 1/7,143-1/1,742) for the general white male population and 1/4, 048 (CI 1/16,260-1/1,244) for the general African American male population. We also compared the frequency of intermediate and premutation FRAXA alleles (41-199 repeats) and fragile XE syndrome alleles (31-199 repeats) in the SEN population with that in a control population, to determine if there was a possible phenotype consequence of such high-repeat alleles, as has been reported previously. No difference was observed between our case and control populations, and no difference was observed between populations when the probands were grouped by a rough estimate of IQ based on class placement. These results suggest that there is no phenotype consequence of larger alleles that would cause carriers to be placed in an SEN class.
Background Population based investigations suggest that red blood cells (RBCs) are therapeutically effective when collected, processed and stored for up to 42 days under validated conditions prior to transfusion. However, some retrospective clinical studies have shown worse patient outcomes when transfused RBCs have been stored for the longest times. Furthermore, studies of RBC persistence in the circulation after transfusion have suggested that considerable donor-to-donor variability exists, and may affect transfusion efficacy. To understand the limitations of current blood storage technologies and to develop approaches to improve RBC storage and transfusion efficacy, we investigated the global metabolic alterations that occur when RBCs are stored in AS-1 (AS1-RBC). Methods Leukoreduced AS1-RBC units prepared from 9 volunteer research donors (12 total donated units) were serially sampled for metabolomics analysis over 42 days of refrigerated storage. Samples were tested by GC/MS and LC/MS/MS, and specific biochemical compounds were identified by comparison to a library of purified standards. Results Over three experiments, 185–264 defined metabolites were quantified in stored RBC samples. Kinetic changes in these biochemicals confirmed known alterations in glycolysis and other pathways previously identified in RBCs stored in SAGM (SAGM-RBC). Furthermore, we identified additional alterations not previously seen in SAGM-RBCs (e.g., stable pentose phosphate pathway flux, progressive decreases in oxidized glutathione), and we delineated changes occurring in other metabolic pathways not previously studied (e.g., S-adenosyl methionine cycle). These data are presented in the context of a detailed comparison with previous studies of SAGM-RBCs from human donors and murine AS1-RBCs. Conclusion Global metabolic profiling of AS1-RBCs revealed a number of biochemical alterations in stored blood that may affect RBC viability during storage as well as therapeutic effectiveness of stored RBCs in transfusion recipients. Significance These results provide future opportunities to more clearly pinpoint the metabolic defects during RBC storage, to identify biomarkers for donor screening and prerelease RBC testing, and to develop improved RBC storage solutions and methodologies.
In at least 98% of fragile X syndrome cases, the disease results from expansion of the CGG repeat in the 5' end of FMR1. The use of microsatellite markers in the FMR1 region has revealed a disparity of risk between haplotypes for CGG repeat expansion. Although instability appears to depend on both the haplotype and the AGG interspersion pattern of the repeat, these factors alone do not completely describe the molecular basis for the linkage disequilibrium between normal and fragile X chromosomes, in part due to instability of the marker loci themselves. In an effort to better understand the mechanism of dynamic mutagenesis, we have searched for and discovered a single nucleotide polymorphism in intron 1 of FMR1 and characterized this marker, called ATL1, in 564 normal and 152 fragile X chromosomes. The G allele of this marker is found in 40% of normal chromosomes, in contrast to 83% of fragile X chromosomes. Not only is the G allele exclusively linked to haplotypes over-represented in fragile X syndrome, but G allele chromosomes also appear to transition to instability at a higher rate on haplotypes negatively associated with risk of expansion. The two alleles of ATL1 also reveal a highly significant linkage disequilibrium between unstable chromosomes and the 5' end of the CGG repeat itself, specifically the position of the first AGG interruption. The data expand the number of haplotypes associated with FMR1 and specifically allow discrimination, by ATL1 alleles, of single haplotypes with differing predispositions to expansion. Such haplotypes should prove useful in further defining the mechanism of dynamic mutagenesis.
Since the development of a molecular diagnosis for the fragile X syndrome in the early 1990s, several population-based studies in Caucasians of mostly northern European descent have established that the prevalence is probably between one in 6,000 to one in 4,000 males in the general population. Reports of increased or decreased prevalence of the fragile X syndrome exist for a few other world populations; however, many of these are small and not population-based. We present here the final results of a 4-year study in the metropolitan area of Atlanta, Georgia, establishing the prevalence of the fragile X syndrome and the frequency of CGG repeat variants in a large Caucasian and African-American population. Results demonstrate that one-quarter to one-third of the children identified with the fragile X syndrome attending Atlanta public schools are not diagnosed before the age of 10 years. Also, a revised prevalence for the syndrome revealed a higher point estimate for African-American males (1/2,545; 95% CI: 1/5,208-1/1,289) than reported previously, although confidence intervals include the prevalence estimated for Caucasians from this (1/3,717; 95% CI: 1/7,692-1/1,869) and other studies. Further population-based studies in diverse populations are necessary to explore the possibility that the prevalence of the fragile X syndrome differs among world populations.
Previous studies have shown that specific short-tandem-repeat (STR) and single-nucleotide-polymorphism (SNP)-based haplotypes within and among unaffected and fragile X white populations are found to be associated with specific CGG-repeat patterns. It has been hypothesized that these associations result from different mutational mechanisms, possibly influenced by the CGG structure and/or cis-acting factors. Alternatively, haplotype associations may result from the long mutational history of increasing instability. To understand the basis of the mutational process, we examined the CGG-repeat size, three flanking STR markers (DXS548-FRAXAC1-FRAXAC2), and one SNP (ATL1) spanning 150 kb around the CGG repeat in unaffected (n=637) and fragile X (n=63) African American populations and compared them with unaffected (n=721) and fragile X (n=102) white populations. Several important differences were found between the two ethnic groups. First, in contrast to that seen in the white population, no associations were observed among the African American intermediate or "predisposed" alleles (41-60 repeats). Second, two previously undescribed haplotypes accounted for the majority of the African American fragile X population. Third, a putative "protective" haplotype was not found among African Americans, whereas it was found among whites. Fourth, in contrast to that seen in whites, the SNP ATL1 was in linkage equilibrium among African Americans, and it did not add new information to the STR haplotypes. These data indicate that the STR- and SNP-based haplotype associations identified in whites probably reflect the mutational history of the expansion, rather than a mutational mechanism or pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.