Sediment from lakes on abandoned coal mines in the Midwestern U.S.A. was examined to determine the factors controlling chemical composition and the role the sediment plays in lake neutralization. Sediment concentrations of many cations, (especially heavy metals) are strongly correlated with sediment sulfide concentration, but poorly correlated with the pH of the overlying water. Leaching the sediment of one lake with 1 N ammonium acetate, 0.1 N HCl, and 6 N HCI revealed that cations were mostly bound in weak acid-leachable and strong acid-leachable forms. The weak acid-leachable form is likely to be metal sulfides and calcium carbonate. The sulfide-poor sediments of extremely acid lakes contained few weak acid-leachable cations. Raw mine-spoil contained large amounts of easily leached cations. There is little relationship between changes in sediment chemistry over time determined from cores of lake sediment and past lake pH. Rates of sulfide deposition were examined in sediment cores because sulfate reduction and deposition has been suggested as a major source of alkalinity in lakes influenced by acid precipitation. Although the rate of sulfate deposition in surface mine lakes is high, it alone seems to be insufficient to cause neutralization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.