Discrete-time renewal sequences play a fundamental role in the theory of stochastic processes. This article considers periodic versions of such processes; specifically, the length of an interrenewal is allowed to probabilistically depend on the season at which it began. Using only elementary renewal and Markov chain techniques, computational and limiting aspects of periodic renewal sequences are investigated. We use these results to construct a time series model for a periodically stationary sequence of integer counts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.