To meet users’ expectations for speed and reliability, 5th Generation (5G) networks and other forms of mobile communication of the future will need to be highly efficient, flexible, and nimble. Because of the expected density and complexity of 5G networks, sophisticated network control across all layers is essential. In this context, self-organizing network (SON) is among the essential solutions for managing the next generation of mobile communication networks. Self-optimization, self-configuration, and self-healing (SH) are typical SON functions. This research creates a framework for analyzing SH by exploring the impact of recovery measures taken in precarious stages of health. For this reason, our suggested architecture takes into account both detection and compensating operations. The system is broken down into some faulty states and the “fuzzy c-means” (FCM) approach is used to conduct the classifying. In the compensation process, the network is characterized as the Markov decision model (MDM), and the linear programming (LP) technique is implemented to find the most effective strategy for reaching a goal. Numerical findings acquired from a variety of situations with varying objectives show that the suggested method with optimized operations in the compensation stage exceeds the approach with randomly chosen actions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.