Even under the most expert care, a properly constructed intestinal anastomosis can fail to heal resulting in leakage of its contents, peritonitis and sepsis. The cause of anastomotic leak remains unknown and its incidence has not changed in decades. Here, we demonstrate that the commensal bacterium Enterococcus faecalis contributes to the pathogenesis of anastomotic leak through its capacity to degrade collagen and to activate tissue matrix metalloprotease-9 (MMP9) in host intestinal tissues. We demonstrate in rats that leaking anastomotic tissues were colonized by E. faecalis strains that showed an increased collagen-degrading activity and also an increased ability to activate host MMP9, both of which contributed to anastomotic leakage. We demonstrate that the E. faecalis genes gelE and sprE were required for E. faecalis-mediated MMP9 activation. Either elimination of E. faecalis strains through direct topical antibiotics applied to rat intestinal tissues or pharmacological suppression of intestinal MMP9 activation prevented anastomotic leak in rats. In contrast, the standard recommended intravenous antibiotics used in patients undergoing colorectal surgery did not eliminate E. faecalis at anastomotic tissues nor did they prevent leak in our rat model. Finally, we show in humans undergoing colon surgery and treated with the standard recommended intravenous antibiotics, that their anastomotic tissues still contained E. faecalis and other bacterial strains with collagen-degrading/MMP9 activity. We suggest that intestinal microbes with the capacity to produce collagenases and to activate host metalloproteinase MMP9 may break down collagen in the gut tissue contributing to anastomotic leak.
Heritability, the proportion of phenotypic variance explained by genetic factors, can be estimated from pedigree data 1 , but such estimates are uninformative with respect to the underlying genetic architecture. Analyses of data from genome-wide association studies (GWAS) on unrelated individuals have shown that for human traits and disease, approximately one-third to two-thirds of heritability is captured by common SNPs 2-5 . It is not known whether the remaining heritability is due to the imperfect tagging of causal variants by common SNPs, in particular if the causal variants are rare, or other reasons such as overestimation of heritability from pedigree data. Here we show that pedigree heritability for height and body mass index (BMI) appears to be fully recovered from whole-genome sequence (WGS) data on 21,620 unrelated individuals of European ancestry. We assigned 47.1 million genetic variants to groups based upon their minor allele frequencies (MAF) and linkage disequilibrium (LD) with variants nearby, and estimated and partitioned variation accordingly. The estimated heritability was 0.79 (SE 0.09) for height and 0.40 (SE 0.09) for BMI, consistent with pedigree estimates. Low-MAF variants in low LD with neighbouring variants were enriched for heritability, to a greater extent for protein altering variants, consistent with negative selection thereon. Cumulatively variants in the MAF range of 0.0001 to 0.1 explained 0.54 (SE 0.05) and 0.51 (SE 0.11) of heritability for height and BMI, respectively. Our results imply that the still missing heritability of complex traits and disease is accounted for by rare variants, in particular those in regions of low LD.
Bariatric surgery, the most effective treatment for obesity and type 2 diabetes, is associated with increased levels of the incretin hormone GLP-1 and changes in levels of circulating bile acids. The levels of individual bile acids in the GI tract following surgery, however, have remained largely unstudied. Using UPLC-MS-based quantification, we observed an increase in an endogenous bile acid, cholic acid-7-sulfate (CA7S), in the GI tract of both mice and humans after sleeve gastrectomy. We show that CA7S is a TGR5 agonist that increases Tgr5 expression and induces GLP-1 secretion. Further, CA7S administration increases glucose tolerance in insulin-resistant mice in a TGR5-dependent manner. CA7S remains gut-restricted, minimizing off-target effects previously observed for TGR5 agonists absorbed into circulation. By studying changes in individual metabolites following surgery, this study has revealed a naturally occurring TGR5 agonist that exerts systemic glucoregulatory effects while remaining confined to the gut.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.