Little is known about the factors that influence the proteasome structures in cells and their activity, although this could be highly relevant to cancer therapy. We have previously shown that, within minutes, irradiation inhibits substrate degradation by the 26S proteasome in most cell types. Here, we report an exception in U87 glioblastoma cells transduced to express the epidermal growth factor receptor vIII (EGFRvIII) mutant (U87EGFRvIII), which does not respond to irradiation with 26S proteasome inhibition. This was assessed using either a fluorogenic substrate or a reporter gene, the ornithine decarboxylase degron fused to ZsGreen (cODCZsGreen), which targets the protein to the 26S proteasome. To elucidate whether this was due to alterations in proteasome composition, we used quantitative reverse transcription-PCR to quantify the constitutive (X, Y, Z) and inducible 20S subunits (Lmp7, Lmp2, Mecl1), and 11S (PA28A and B) and 19S components (PSMC1 and PSMD4). U87 and U87EGFRvIII significantly differed in expression of proteasome subunits, and in particular immunosubunits. Interestingly, 2 Gy irradiation of U87 increased subunit expression levels by 16% to 324% at 6 hours, with a coincident 30% decrease in levels of the proteasome substrate c-myc, whereas they changed little in U87EGFRvIII. Responses similar to 2 Gy were seen in U87 treated with a proteasome inhibitor, NPI0052, suggesting that proteasome inhibition induced replacement of subunits independent of the means of inhibition. Our data clearly indicate that the composition and function of the 26S proteasome can be changed by expression of the EGFRvIII. How this relates to the increased radioresistance associated with this cell line remains to be established. (Mol Cancer Res 2008;6(3):426 -34)
Purpose-The classical radiobiological paradigm is that DNA is the target for cell damage caused by ionising radiation. However, evidence is accumulating that other constituents, such as the membrane, organelles, and proteins, are also important targets. We have shown that the isolated 26S proteasome is one such target and here we wish to substantiate it within the cell, in situ.Materials and methods-We used confocal microscopy to quantitatively detect and subcellularly localise radiation-induced 26S proteasome inhibition in cells expressing an ornithine decarboxylase degron that targets a fused Zoanthus species green (ZsGreen) fluorescent protein reporter specifically to the 26S proteasome.Results-Exposure of cells to a range of radiation doses, even as low as 0.05 Gy inhibited 26S activity within minutes. Initially, punctate nuclear ZsGreen fluorescence was observed that became cytoplasmic after seven hours -a pattern distinct from the diffuse homogeneous fluorescence of cells incubated in the conventional proteasome inhibitor MG-132.Conclusions-Our study clearly indicates that the 26S proteasome is a radiation target with physiological consequences and introduces a new perspective in mechanistic investigations of cellular responses to stresses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.