Background: Phosphorylation controls intracellular localization of lipin 1 and has been proposed to regulate activity. Results: Lipin 1 preferentially binds di-anionic phosphatidic acid, and this is eliminated by phosphorylation. Conclusion: Lipin 1 association with phosphatidic acid is regulated by phosphorylation and electrostatic charge of substrate. Significance: Phosphorylation and the local membrane environment both significantly contribute to the regulation of lipin 1 PAP activity.
The long-term ecological response to recurrent deforestation associated with shifting cultivation remains poorly investigated, especially in the dry tropics. We present a study of phosphorus (P) dynamics in the southern Yucatán, highlighting the possibility of abrupt shifts in biogeochemical cycling resulting from positive feedbacks between vegetation and its limiting resources. After three cultivation–fallow cycles, available soil P declines by 44%, and one-time P inputs from biomass burning decline by 76% from mature forest levels. Interception of dust-borne P (“canopy trapping”) declines with lower plant biomass and leaf area, limiting deposition in secondary forest. Potential leaching losses are greater in secondary than in mature forest, but the difference is very small compared with the difference in P inputs. The decline in new P from atmospheric deposition creates a long-term negative ecosystem balance for phosphorus. The reduction in soil P availability will feed back to further limit biomass recovery and may induce a shift to sparser vegetation. Degradation induced by hydrological and biogeochemical feedbacks on P cycling under shifting cultivation will affect farmers in the near future. Without financial support to encourage the use of fertilizer, farmers could increase the fallow period, clear new land, or abandon agriculture for off-farm employment. Their response will determine the regional balance between forest loss and forest regrowth, as well as the frequency of use and rate of recovery at a local scale, further feeding back on ecological processes at multiple scales.
Using both historic records and CORINE land cover maps, we assessed the impact of land cover change on the stock of soil organic carbon (SOC) in the Republic of Ireland from 1851 to 2000. We identified ten principal land cover classes: arable land, forest, grassland, heterogeneous agricultural areas/other, nonvegetated semi-natural areas, peatland, suburban, urban, water bodies, and wetland. For each land cover class, the SOC stock was estimated as the product of SOC density and land cover area. These were summed to calculate a national SOC budget for the Republic of Ireland. The Republic of Ireland's 6.94 million hectares of land have undergone considerable change over the past 150 years. The most striking feature is the decrease in arable land from 1.44 million ha in 1851 to 0.55 million ha in 2000. Over the same time period, forested land increased by 0.53 million ha. As of 2000, agricultural lands including arable land (7.85%), grassland (54.33%), and the heterogeneous agricultural areas/other class (7.91%) account for 70.09% of Irish land cover. We estimate that the SOC stock in the Republic of Ireland, to 1 m depth, has increased from 1,391 Tg in 1851 to 1,469 Tg in 2000 despite soil loss due to urbanization. This increase is largely due to the increase of forested land with its higher SOC stocks when compared to agricultural lands. Peatlands contain a disproportionate quantity of the SOC stock. Although peatlands only occupy 17.36% of the land area, as of 2000, they represented 36% of the SOC stock (to 1 m depth).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.