MXene transition-metal carbides and nitrides are of growing interest for energy storage applications. These compounds are especially promising for use as pseudocapacitive electrodes due to their ability to convert energy electrochemically at fast rates. Using voltage-dependent cluster expansion models, we predict the charge storage performance of MXene pseudocapacitors for a range of electrode compositions. M3C2O2 electrodes based on group-VI transition metals have up to 80% larger areal energy densities than prototypical titanium-based (e.g., Ti3C2O2) MXene electrodes. We attribute this high pseudocapacitance to the Faradaic voltage windows of group-VI MXene electrodes, which are predicted to be 1.2 to 1.8 times larger than those of titanium-based MXenes. The size of the pseudocapacitive voltage window increases with the range of oxidation states that are accessible to the MXene transition metals. By similar mechanisms, the presence of multiple ions in the solvent (Li+ and H+) leads to sharp changes in the transition-metal oxidation states and can significantly increase the charge capacity of MXene pseudocapacitors.
Water electrolysis is of interest as a sustainable way to produce clean hydrogen and oxygen fuel and help mitigate the rising problems of climate change while meeting global energy demands. High-efficiency, stable, and earth-abundant bifunctional catalysts are needed to enable more effective electrochemical cells for the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). Here, we investigate the synthesis, composition, performance, and mechanism of multimetal catalysts serving dual functionality in both OER and HER of water electrolysis. Through a laser synthesis method, we synthesized heterogeneous catalysts of nanocrystalline multimetallic alloy pockets embedded within an amorphous oxide matrix. We evaluated the performance and composition of a range of mixed transition-metal oxide materials for both OER and HER, ultimately synthesizing a Cr0.01Fe0.27Co0.34Ni0.38O x /C y catalyst that has a stable, high-rate, and competitive overall water splitting performance of 1.76 V at 100 mA cm–2 in an alkaline medium. Using density functional theory to gain insight as the active site and mechanism, we propose that the inclusion of a minor amount of Cr increases the degeneracy of energetic states that lowers the cost of forming the O 2 p–d bond and H 1 s–d bond due to the hybridization of s, p, and d orbitals from Cr. Using a two-electrode water electrolysis cell with a constant potential of 1.636 V to mimic the setup for fuel production, we found the catalyst to be stable at 14–15 mA cm–2 for 40 h. This laser synthesis method allowing for facile and rapid synthesis of complex multimetal systems demonstrates how doping a Fe, Co, and Ni heterogeneous amorphous/nanocrystalline structure with small amounts of Cr is important for bifunctional catalytic behavior, particularly for increasing HER functionality in advancing our understanding for future electrocatalytic design.
MXenes are a novel class of two dimensional materials, discovered by Barsoum and Gogotsi [M. Naguib, J. Come, B. Dyatkin, V. Presser, P. Taberna, P. Simon, M. W. Barsoum, and Y. Gogotsi, Electrochemistry Communications 16, 61-64 (2012); B. Anasori, M. R. Lukatskaya, and Y. Gogotsi, Nature Reviews Materials vol. 2, 16098 (2017)]. Their large specific surface area and the tunability of their physicochemical properties as a function of the transition metal and surface terminal group make them a unique design platform for various applications, a primary example of which is pseudocapacitive energy storage. However, there is still incomplete understanding of how the transition metal chemistry and stoichiometry, and the surface termination affect charge storage mechanisms in MXene. In this study, we have performed systematic first-principles calculations for bulk MXene and found that the atomic charge of the metal cations, which is related to their valence, decreases across the d-electron metal series. Electronic-structure indicators of performance are examined to understand the energy storage behavior, whereby charges are stored between the terminal groups and adsorbing cations. Importantly, we found that the differential Bader charges show good agreement with theoretical capacitances and are useful in predicting charge storage trends in MXene-based pseudocapacitors. Furthermore, we have performed first-principles and grand canonical Monte Carlo calculations for the slab systems, finding that the solvent plays a critical role in enhancing the pseudocapacitive response.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.