Plant functional trait change across a warming tundra biomeThe tundra is warming more rapidly than any other biome on Earth, and the potential ramifications are far-reaching because of global feedback effects between vegetation and climate. A better understanding of how environmental factors shape plant structure and function is crucial for predicting the consequences of environmental change for ecosystem functioning. Here we explore the biome-wide relationships between temperature, moisture and seven key plant functional traits both across space and over three decades of warming at 117 tundra locations. Spatial temperature-trait relationships were generally strong but soil moisture had a marked influence on the strength and direction of these relationships, highlighting the potentially important influence of changes in water availability on future trait shifts in tundra plant communities. Community height increased with warming across all sites over the past three decades, but other traits lagged far behind predicted rates of change. Our findings highlight the challenge of using space-for-time substitution to predict the functional consequences of future warming and suggest that functions that are tied closely to plant height will experience the most rapid change. They also reveal the strength with which environmental factors shape biotic communities at the coldest extremes of the planet and will help to improve projections of functional changes in tundra ecosystems with climate warming. Environment-trait relationships across the tundra biomeWe found strong spatial associations between temperature and community height, SLA and LDMC (Fig. 2a, Extended Data Fig. 2 and Supplementary Table 3) across the 117 survey sites. Both height and SLA increased with summer temperature, but the temperaturetrait relationship for SLA was much stronger at wetter than at drier sites. LDMC was negatively related to temperature, and
Understanding plant trait responses to elevated temperatures in the Arctic is critical in light of recent and continuing climate change, especially because these traits act as key mechanisms in climate-vegetation feedbacks. Since 1992, we have artificially warmed three plant communities at Alexandra Fiord, Nunavut, Canada (791N). In each of the communities, we used open-top chambers (OTCs) to passively warm vegetation by 1-2 1C. In the summer of 2008, we investigated the intraspecific trait responses of five key species to 16 years of continuous warming. We examined eight traits that quantify different aspects of plant performance: leaf size, specific leaf area (SLA), leaf dry matter content (LDMC), plant height, leaf carbon concentration, leaf nitrogen concentration, leaf carbon isotope discrimination (LCID), and leaf d 15 N. Long-term artificial warming affected five traits, including at least one trait in every species studied. The evergreen shrub Cassiope tetragona responded most frequently (increased leaf size and plant height/ decreased SLA, leaf carbon concentration, and LCID), followed by the deciduous shrub Salix arctica (increased leaf size and plant height/decreased SLA) and the evergreen shrub Dryas integrifolia (increased leaf size and plant height/ decreased LCID), the forb Oxyria digyna (increased leaf size and plant height), and the sedge Eriophorum angustifolium spp. triste (decreased leaf carbon concentration). Warming did not affect d 15 N, leaf nitrogen concentration, or LDMC. Overall, growth traits were more sensitive to warming than leaf chemistry traits. Notably, we found that responses to warming were sustained, even after many years of treatment. Our work suggests that tundra plants in the High Arctic will show a multifaceted response to warming, often including taller shoots with larger leaves.
Abstract. The Canadian High Arctic has been warming for several decades. Over this period, tundra plant communities have been influenced by regional climate change, as well as other disturbances. At a site on Ellesmere Island, Nunavut, Canada, we measured biomass and composition changes in a heath community over 13 years using a point-intercept method in permanent plots (1995)(1996)(1997)(1998)(1999)(2000)(2001)(2002)(2003)(2004)(2005)(2006)(2007) and over 27 years using a biomass harvest comparison . Results from both methods indicate that the community became more productive over time, suggesting that this ecosystem is currently in transition. Bryophyte and evergreen shrub abundances increased, while deciduous shrub, forb, graminoid, and lichen cover did not change. Species diversity also remained unchanged. Because of the greater evergreen shrub cover, canopy height increased. From 1995 to 2007, mean annual temperature and growing season length increased at the site. Maximum thaw depth increased, while soil water content did not change. We attribute the increased productivity of this community to regional warming over the past 30-50 years. This study provides the first plot-based evidence for the recent pan-Arctic increase in tundra productivity detected by satellite-based remote-sensing and repeat-photography studies. These types of ground-level observations are critical tools for detecting and projecting long-term community-level responses to warming.
Summary1. Identifying plant communities that are resistant to climate change will be critical for developing accurate, wide-scale vegetation change predictions. Most northern plant communities, especially tundra, have shown strong responses to experimental and observed warming. 2. Experimental warming is a key tool for understanding vegetation responses to climate change. We used open-top chambers to passively warm an evergreen-shrub heath by 1.0-1.3°C for 15 years at Alexandra Fiord, Nunavut, Canada (79°N). In 1996, 2000 and 2007, we measured height, plant composition and abundance with a point-intercept method. 3. Experimental warming did not strongly affect vascular plant cover, canopy height or species diversity, but it did increase bryophyte cover by 6.3% and decrease lichen cover by 3.5%. Temporal changes in plant cover were more frequent and of greater magnitude than changes due to experimental warming. 4. Synthesis. This evergreen-shrub heath continues to exhibit community-level resistance to longterm experimental warming, in contrast to most Arctic plant communities. Our findings support the view that only substantial climatic changes will alter unproductive ecosystems.
In this article we present an empirical study aimed at better understanding the potential for harm when conducting research in chatrooms. For this study, we entered IRC chatrooms on the ICQ network and posted one of three messages to tell participants that we were recording them: a recording message, an opt-in message, or an opt-out message. In the fourth condition, we entered the chatroom but did not post a message. We recorded and analyzed how subjects responded to being studied. Results of a regression analysis indicate significantly more hostility in the three conditions where we said something than in the control condition. We were kicked out of 63.3% of the chatrooms we entered in the three message conditions compared with 29% of the chatrooms in the control condition. There were no significant differences between any of these three conditions. Notably, when given a chance to opt in, only 4 of 766 potential subjects chose to do so. Results also indicate significant effects for both size and the number of moderators. For every 13 additional people in a chatroom, the likelihood getting kicked out was cut in half. While legal and ethical concerns are distinct, we conclude by arguing that studying chatrooms constitutes human subjects research under U.S. law, but that a waiver of consent is appropriate in most cases as obtaining consent is impracticable.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.