We assess the runoff and surface mass balance (SMB) of the Greenland ice sheet in the Nuuk region (southwest) using output of two regional climate models (RCMs) evaluated by observations. The region encompasses six glaciers that drain into Godthåbsfjord. RCM data (1960–2012) are resampled to a high spatial resolution to include the narrow (relative to the native grid spacing) glacier trunks in the ice mask. Comparing RCM gridded results with automatic weather station (AWS) point measurements reveals that locally models can underestimate ablation and overestimate accumulation by up to tens of per cent. However, comparison with lake discharge indicates that modelled regional runoff totals are more accurate. Model results show that melt and runoff in the Nuuk region have doubled over the past two decades. Regional SMB attained negative values in recent high-melt years. Taking into account frontal ablation of the marine-terminating glaciers, the region lost 10–20 km3 w.e. a–1 in 2010–12. If 2010 melting prevails during the remainder of this century, a low-end estimate of sea-level rise of 5 mm is expected by 2100 from this relatively small section (2.6%) of the ice sheet alone.
Abstract. Changes in margins derived from satellite imagery are quantitative indicators of the environmental processes and drivers acting on the Earth's surface, for example retreating ice margins or coastal changes with rising sea level. However, the large-scale rapid visualisation and analysis of the satellite record is often impractical due to factors such as computer processing power, software availability, internet connection speed and/or user expertise in remote sensing. Here are presented three new, freely accessible tools that together can be used to process, visualise and review data from the full Landsat 4–8 and Sentinel 1–2 satellite records in seconds, enabling efficient mapping (through manual digitisation) and automated quantification of margin changes. These tools are highly accessible for users from a range of remote-sensing expertise (from academics to high school students), with minimal computational, licensing and knowledge-based barriers to access. The Google Earth Engine Digitisation Tool (GEEDiT) allows users to define a point anywhere on the planet and filter data from each satellite for user-defined time frames, maximum acceptable cloud cover extent, and options of predefined or custom image band combinations via a simple graphical user interface (GUI). GEEDiT allows georeferenced vectors to be easily and rapidly mapped from each image, with image metadata and user notes automatically appended to each vector, which can then be exported for subsequent analysis. The GEEDiT Reviewer tool allows users to quality control their own/others' data and also filter existing datasets based on the spatial/temporal requirements for their particular research question. The Margin change Quantification Tool (MaQiT) is complementary to GEEDiT and GEEDiT Reviewer, allowing the rapid quantification of these margin changes by utilising two well-established methods that have previously been used to measure glacier margin change and two new methods via a similarly simple GUI. A case study of the lake-terminating glacier Breiðamerkurjökull, Iceland, is used to demonstrate the complementary functionality of GEEDiT, GEEDiT Reviewer and MaQiT, though it should be noted that MaQiT is also suitable for the (re-)analysis of existing datasets not generated by GEEDiT. MaQiT has been developed with the original aim of quantifying tidewater glacier terminus change, though the methods included within the tool have potential for wide applications in multiple areas of Earth surface science (e.g. coastal and vegetation extent change). It is hoped that these tools will allow a wide range of researchers and students across the geosciences to efficiently map, analyse and access volumes of data that would have previously proven prohibitive.
Several different methodologies have previously been employed in the tracking of glacier terminus change, though a systematic comparison of these has not been undertaken. The frequent application of single methods to multiple glaciers over large geographical areas such as Greenland, raises the question of whether individual methodologies are robust. In this study we evaluate three existing methodologies that have been widely used to track terminus change (the centre-line, bow and box methods) against a full range of idealized glaciological scenarios and six examples of real glaciers. We also evaluate two new methodologies that aim to reduce measurement error compared with the existing methodologies. The first is a modification to the box method that can account for termini retreating through fjords that change orientation (termed the curvilinear box method), while the second determines the average terminus position relative to the glacier centre line using an inverse distance weighting extrapolation (termed the extrapolated centre-line method). No single method tested achieved complete accuracy for all scenarios, though the extrapolated centre-line method was able to successfully account for variable fjord orientation, width and terminus geometry with the least error.
ABSTRACT. Tidewater glaciers in Greenland experienced widespread retreat during the last century. Information on their behaviour prior to this is often poorly constrained due to lack of observations, while determining the drivers prior to instrumental records is also problematic. Here we present a record of the dynamics of Kangiata Nunaata Sermia (KNS), southwest Greenland, from its Little Ice Age maximum (LIAmax) to 1859 -the period before continuous air temperature observations began at Nuuk in 1866. Using glacial geomorphology, historical accounts, photographs and GIS analyses, we provide evidence KNS was at its LIAmax by 1761, had retreated by $5 km by 1808 and a further 7 km by 1859. This predates retreat at Jakobshavn Isbrae by 43-113 years, demonstrating the asynchroneity of tidewater glacier terminus response following the LIA. We use a one-dimensional flowband model to determine the relative sensitivity of KNS to atmospheric and oceanic climate forcing. Results demonstrate that terminus forcing rather than surface mass balance drove the retreat. Modelled glacier sensitivity to submarine melt rates is also insufficient to explain the retreat observed. However, moderate increases in crevasse water depth, driving an increase in calving, are capable of causing terminus retreat of the observed magnitude and timing.
Gaining knowledge of tidewater glacier (TWG) margin evolution, solid ice flux and their responses to climate over large spatio-temporal scales provides valuable context for the projection of future Greenland ice sheet (GrIS) change. Although studies of sector-wide responses of TWGs exist, studies at an ice-sheet-wide scale have only just become feasible. Here, we present a dataset of 224 annual TWG margins for 1984–2017 (n = 3801), showing that averaged over regional scales, normalised terminus change is linear. Regionally linear retreat trends were identified across most sectors of the GrIS starting in the mid-1990s, although in contrast to previous studies, the northeastern sector is shown to have experienced sustained retreat since the mid-1980s. Through cointegration analyses, individual glaciers are shown to have differing sensitivities to potential climate drivers, though on a sector-wide scale the northwest and southeast are shown to be especially sensitive to annual sea surface temperature and June–July–August air temperature, respectively. Although 92% of the analysed glaciers experience retreat across the GrIS, observed increases in absolute flux for the entire ice sheet can be explained by changes in just 11 of these TWGs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.