The palladium-catalyzed N-(hetero)arylation of a number of heteroarylamines including 2-aminopyridines, 2-aminothiazoles, and their analogues has been realized using Xantphos as the ligand. Weak bases such as Cs(2)CO(3), Na(2)CO(3), and K(3)PO(4) were used in most cases to allow for the introduction of functional groups. Choice of the base and solvent was critical for the success of these reactions. [reaction: see text]
An efficient stereoselective synthesis of the orally active NK(1) receptor antagonist Aprepitant is described. A direct condensation of N-benzyl ethanolamine with glyoxylic acid yielded a 2-hydroxy-1,4-oxazin-3-one which was activated as the corresponding trifluoroacetate. A Lewis acid mediated coupling with enantiopure (R)-1-(3,5-bis(trifluoromethyl)phenyl)ethan-1-ol afforded a 1:1 mixture of acetal diastereomers which was converted into a single isomer via a novel crystallization-induced asymmetric transformation. The resulting 1,4-oxazin-3-one was converted via a unique and highly stereoselective one-pot process to the desired alpha-(fluorophenyl)morpholine derivative. Interesting and unexpected [1,2]-Wittig and [1,3]-sigmatropic rearrangements were identified during the optimization of these key steps. In the final step, a triazolinone side chain was appended to the morpholine core. The targeted clinical candidate was thus obtained in 55% overall yield over the longest linear sequence.
The concise synthesis of a potent thrombin inhibitor was accomplished by a mild lactone aminolysis between an orthogonally protected bis-benzylic amine and a diastereomerically pure lactone. The lactone was synthesized by the condensation of l-proline methyl ester with an enantiomerically pure hydroxy acid, which in turn was synthesized by a highly stereoselective (>500:1 er) and productive (100,000:1, S/C) enzymatic reduction of an alpha-ketoester. In addition, a second route to the enantiomerically pure lactone was accomplished by a diastereoselective ketoamide reduction.
An efficient synthesis of the potent KDR inhibitor 3-[5-[[4-(methylsulfonyl)-1-piperazinyl]methyl]-1H-indole-2-yl]quinolin-2(1H)-one (1) is described. The process features a noncryogenic indole boronation and a dicyclohexylamine-mediated Suzuki coupling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.