Purpose: To determine whether mild cooling of the egg reduces movement to the point where an ultra-high-field (7T) MRI system can be used to noninvasively monitor chick growth in ovo from 12 days incubation through to hatching. Materials and Methods:Group A eggs were incubated at 37.5°C for 21 days. Group B eggs were removed from the incubator on days 12, 15, 17, 18, 19, and 20 of incubation, cooled for one hour, and then returned to the incubator. Group C eggs were cooled as for group B and then individually imaged for 25 minutes using a 7T MRI system before being returned to the incubator. The average size (volume) of the heart, liver, and brain at each stage of incubation was estimated from the T 2 -weighted images and compared with existing values in the literature. Results:The combination of cooling and MRI significantly reduced chick movement to allow excellent image acquisition at each stage of incubation. Repeated cooling and/or MRI did not significantly slow down or arrest the development of the chicks in either of the experimental groups.Conclusion: MRI provides a powerful noninvasive tool to study chick development and the growth of individual organs, including the brain, liver, and heart, in ovo from 12 days' incubation.
The Ca2+-independent δ-isoform of protein kinase C (PKC-δ) was overexpressed in LLC-PK1 epithelia and placed under control of a tetracycline-responsive expression system. In the absence of tetracycline, the exogenous PKC-δ is expressed. Western immunoblots show that the overexpressed PKC-δ is found in the cytosolic, membrane-associated, and Triton-insoluble fractions. Overexpression of PKC-δ produced subconfluent and confluent epithelial morphologies similar to that observed on exposure of wild-type cells to the phorbol ester 12- O-tetradecanoylphorbol-13-acetate. Transepithelial electrical resistance ( R T) in cell sheets overexpressing PKC-δ was only 20% of that in cell sheets incubated in the presence of tetracycline, in which the amount of PKC-δ and R Twere similar to those in LLC-PK1parental cell sheets. Overexpression of PKC-δ also elicited a significant increase in transepithelial flux ofd-[14C]mannitol and a radiolabeled 2 × 106-molecular-weight dextran, suggesting with the R T decrease that overexpression increased paracellular, tight junctional permeability. Electron microscopy showed that PKC-δ overexpression results in a multilayered cell sheet, the tight junctions of which are almost uniformly permeable to ruthenium red. Freeze-fracture electron microscopy indicates that overexpression of PKC-δ results in a more disorganized arrangement of tight junctional strands. As with LLC-PK1 cell sheets treated with 12- O-tetradecanoylphorbol-13-acetate, the reduced R T, increasedd-mannitol flux, and tight junctional leakiness to ruthenium red that are seen with PKC-δ overexpression suggest the involvement of PKC-δ in regulation of tight junctional permeability.
Newly emerged SARS-CoV-2 is the cause of an ongoing global pandemic leading to severe respiratory disease in humans. SARS-CoV-2 targets epithelial cells in the respiratory tract and lungs, which can lead to amplified chloride secretion and increased leak across epithelial barriers, contributing to severe pneumonia and consolidation of the lungs as seen in many COVID-19 patients. There is an urgent need for a better understanding of the molecular aspects that contribute to SARS-CoV-2-induced pathogenesis and for the development of approaches to mitigate these damaging pathologies. The multifunctional SARS-CoV-2 Envelope (E) protein contributes to virus assembly/egress, and as a membrane protein, also possesses viroporin channel properties that may contribute to epithelial barrier damage, pathogenesis, and disease severity. The extreme C-terminal (ECT) sequence of E also contains a putative PDZ-domain binding motif (PBM), similar to that identified in the E protein of SARS-CoV-1. Here, we screened an array of GST-PDZ domain fusion proteins using either a biotin-labeled WT or mutant ECT peptide from the SARS-CoV-2 E protein. Notably, we identified a singular specific interaction between the WT E peptide and the second PDZ domain of human Zona Occludens-1 (ZO1), one of the key regulators of TJ formation/integrity in all epithelial tissues. We used homogenous time resolve fluorescence (HTRF) as a second complementary approach to further validate this novel modular E-ZO1 interaction. We postulate that SARS-CoV-2 E interacts with ZO1 in infected epithelial cells, and this interaction may contribute, in part, to tight junction damage and epithelial barrier compromise in these cell layers leading to enhanced virus spread and severe dysfunction that leads to morbidity. Prophylactic/therapeutic intervention targeting this virus-host interaction may effectively reduce airway and/or gastrointestinal barrier damage and mitigate virus spread.
The tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA) irreversibly dissipates the electrical potential difference (PD) across LLC-PK1 renal epithelial cell sheets in a dose-dependent manner. The promoter is equally effective when presented to either cell surface. TPA is also equally effective at dissipating the apical-negative PD or the heretofore undescribed apical-positive PD, both of which can exist spontaneously across this monolayer. Diffusion potentials arising from imposed NaCl gradients across LLC-PK1 cell sheets are likewise reduced by TPA. The non-tumor-promoting parent compound, phorbol, is ineffective, but the more hydrophilic TPA analogue, phorbol 12,13-dibutyrate (PDBU) is as effective as TPA. Unlike TPA, the effects of PDBU are reversible. By observing the (paracellular) fluxes of D-mannitol and polyethylene glycol, these effects on PD are shown to be due to increased permeability of the tight junctions. This effect is immediately reversible once PDBU is removed. These findings are discussed in light of the ramifications of the breakdown of epithelial compartments in vivo and the role this could play in the regulation of epithelial cell growth.
Tumor necrosis factor-alpha (TNF) causes a spontaneously reversible increase in tight junction permeability. TNF was the only cytokine tested that produced this effect. The effect on transepithelial permeability proceeds in four distinct phases: 1) a 60- to 90-min delay from time of application of TNF, 2) a rapid decrease in transepithelial resistance, 3) a recovery of transepithelial resistance to control level within 1 h, and 4) a further increase of transepithelial resistance above control levels. The recovery of transepithelial resistance occurs with or without TNF in the culture medium. Different protein kinase inhibitors affected different phases of this overall process. The tyrosine kinase inhibitor genistein significantly blocked the TNF effect. Neither transcription nor protein synthesis was required for transepithelial permeability to increase, but were required for the recovery. After the tight junctions have opened at 2 h in response to TNF, a second application of TNF will not produce the effect again for at least 12 h. The tight junctions will, however, open in response to phorbol esters during this time frame. Electron microscopy studies using apically applied ruthenium red suggest that TNF action results in < 10% of the junctions having increased permeability at any given time during the resistance decrease. The role of epithelial barrier permeability changes in TNF action in vivo is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.