A high power continuous wave quantum cascade laser operating around 1900 cm(-1) has been used to conduct Lamb dip spectroscopy on a low pressure sample of NO. The widths of the Lamb dips indicate that the laser linewidth is 800 ± 60 kHz and the power sufficient to induce significant population transfer of up to 35%. While the Lamb dip signals are symmetric at low laser chirp rates, they become increasingly asymmetric as the chirp rate increases, further confirming the significant degree of population transfer. In addition rapid passage structure on the Lamb dip signal is observed after the weak probe beam is swept through the line center. This structure is sensitive to both the probe chirp rate and the underlying hyperfine structure of the rovibrational transition, and is accurately modeled using the optical Bloch equations.
The sensitivity of mid-IR quantum cascade laser (QCL) off-axis cavity-enhanced absorption spectroscopy (CEAS), often limited by cavity mode structure and diffraction losses, was enhanced by applying a broadband RF noise to the laser current. A pump-probe measurement demonstrated that the addition of bandwidth-limited white noise effectively increased the laser linewidth, thereby reducing mode structure associated with CEAS. The broadband noise source offers a more sensitive, more robust alternative to applying single-frequency noise to the laser. Analysis of CEAS measurements of a CO(2) absorption feature at 1890 cm(-1) averaged over 100 ms yielded a minimum detectable absorption of 5.5×10(-3) Hz(-1/2) in the presence of broadband RF perturbation, nearly a tenfold improvement over the unperturbed regime. The short acquisition time makes this technique suitable for breath applications requiring breath-by-breath gas concentration information.
Two 5 µm continuous wave quantum cascade lasers are used to perform a counterpropagating pump and probe experiment on a low pressure sample of nitric oxide. The strong pump field excites a fundamental rovibrational transition and the weaker probe field is tuned to the corresponding rotationally resolved hot band transition. When both light fields are in resonance, rapid passage is observed in the hot band absorption lineshape arising from a minimally damped and velocity-selected sample of molecules in the v=1 state. The measured rapid passage signals are well described by a two-level model based on the optical Bloch equations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.