The development of potent antithrombotic agents from the fibrinogen platelet receptor binding sequences Fg-alpha 572-575 -Arg-Gly-Asp-Ser- and Fg-gamma 400-411 -HHLGGAKQAGDV, believed to be a cryptic RGD-type sequence, is described. The tetrapeptide Ac-RGDS-NH2 itself is capable of inhibiting platelet aggregation in vitro at high concentrations, IC50 91.3 +/- 0.1 microM [in vitro antiaggregatory activity employing dog platelet rich plasma (PRP)/ADP], due to low platelet fibrinogen receptor affinity, Ki 2.9 +/- 1.9 microM (purified, reconstituted human platelet GPIIb/IIIa), relative to fibrinogen, Ki 38.0 +/- 6.0 nM. The peptide is also unstable to plasma, suffering total loss of in vitro activity upon incubation in PRP for 3 h (T1/2 90 min). Only modest improvements in potency were achieved with linear analogues of Ac-RGDS-NH2, while dramatic results were achieved with cyclic analogues, culminating in the cyclic disulfide Ac-cyclo-S,S-[Cys-(N alpha-Me)Arg-Gly-Asp-Pen]-NH2 (SK&F 106760) with improved plasma stability (100% activity after 3 h), affinity (Ki 58 +/- 20 nM purified human receptor), and potency (IC50 0.36 +/- 0.4 microM dog PRP/ADP). The affinity of this peptide is 2 orders of magnitude greater than that of Ac-RGDS-NH2. The affinity of the analogue is also comparable to fibrinogen. This peptide constitutes a first potent small peptide entry into the class of novel antithrombotic agents called fibrinogen receptor antagonists.
The linear peptide 12p1 (RINNIPWSEAMM) was previously isolated from a phage display library and was found to inhibit interaction of HIV-1 gp120 with both CD4 and a CCR5 surrogate, mAb 17b [Ferrer, M., and Harrison, S. (1999) J. Virol. 73, 5795-5802]. In this work, we investigated the mechanism that leads to this dual inhibition of gp120 binding. We found that there is a direct interaction of 12p1 with gp120, which occurs with a binding stoichiometry of 1:1. The peptide inhibits binding of monomeric YU2 gp120 to both sCD4 and 17b at IC(50) values of 1.1 and 1.6 microM, respectively. The 12p1 peptide also inhibited the binding of these ligands to trimeric envelope glycoproteins, blocked the binding of gp120 to the native coreceptor CCR5, and specifically inhibited HIV-1 infection of target cells in vitro. Analyses of sCD4 saturation of monomeric gp120 in the presence or absence of a fixed concentration of peptide suggest that 12p1 suppression of CD4 binding to gp120 is due to allosteric inhibitory effects rather than competitive inhibition of CD4 binding. Using a panel of gp120 mutants that exhibit weakened inhibition by 12p1, the putative binding site of the peptide was mapped to a region immediately adjacent to, but distinguishable from, the CD4 binding footprint. In the case of the peptide, the effects of single-12p1 residue substitutions and various peptide truncations indicate that the side chain of Trp7 and other structural elements of 12p1 are critical for gp120 binding or efficient inhibition of binding of a ligand to gp120. Finally, 12p1 was unable to inhibit binding of sCD4 to a gp120 mutant that is believed to resemble the CD4-induced conformation of gp120. These results suggest that 12p1 preferentially binds gp120 prior to engagement of CD4; binding of the peptide to gp120 limits the interaction with ligands (CD4 and CCR5) that are generally crucial for viral entry. More importantly, these results indicate that 12p1 binds to a unique site that may prove to be a prototypic target for novel CD4-gp120 inhibitors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.