To address the source of infection in humans and public health importance of Giardia duodenalis parasites from animals, nucleotide sequences of the triosephosphate isomerase (TPI) gene were generated for 37 human isolates, 15 dog isolates, 8 muskrat isolates, 7 isolates each from cattle and beavers, and 1 isolate each from a rat and a rabbit. Distinct genotypes were found in humans, cattle, beavers, dogs, muskrats, and rats. TPI and small subunit ribosomal RNA (SSU rRNA) gene sequences of G. microti from muskrats were also generated and analyzed. Phylogenetic analysis on the TPI sequences confirmed the formation of distinct groups. Nevertheless, a major group (assemblage B) contained most of the human and muskrat isolates, all beaver isolates, and the rabbit isolate. These data confirm that G. duodenalis from certain animals can potentially infect humans and should be useful in the detection, differentiation, and taxonomy of Giardia spp.
Over 13 months, 465 beavers, foxes, muskrats, otters, and raccoons were trapped in four counties in eastern Maryland and examined by molecular methods for microsporidia. A two-step nested PCR protocol was developed to amplify a 392-bp fragment of the internal transcribed spacer region of the rRNA gene of Enterocytozoon spp., with the use of primers complementary to the conserved regions of published nucleotide sequences. Fifty-nine PCR-positive samples were sequenced. Multiple alignments of these sequences identified 17 genotypes of Enterocytozoon spp. (WL1 to WL17); of these, 15 have not been reported before. Most of the genotypes were found in multiple species of wildlife and belonged to a major group consisting of all the previously described Enterocytozoon bieneusi genotypes from human and domestic animals. Some of the isolates from muskrats and raccoons formed two distinct groups. Results of this study indicate that fur-bearing mammals, especially those closely associated with surface water, can be a potential source of human-pathogenic E. bieneusi. However, there are also host-adapted Enterocytozoon genotypes in wildlife, which may represent species different from E. bieneusi and have no apparent public health significance. This is the first report of E. bieneusi in wildlife.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.