Improvements in irrigated areas' classification accuracy are critical to enhance agricultural water management and inform policy and decision-making on irrigation expansion and land use planning. This is particularly relevant in water-scarce regions where there are plans to increase the land under irrigation to enhance food security, yet the actual spatial extent of current irrigation areas is unknown. This study applied a non-parametric machine learning algorithm, the random forest, to process and classify irrigated areas using images acquired by the Landsat and Sentinel satellites, for Mpumalanga Province in Africa. The classification process was automated on a big-data management platform, the Google Earth Engine (GEE), and the R-programming was used for post-processing. The normalised difference vegetation index (NDVI) was subsequently used to distinguish between irrigated and rainfed areas during 2018/19 and 2019/20 winter growing seasons. High NDVI values on cultivated land during the dry season are an indication of irrigation. The classification of cultivated areas was for 2020, but 2019 irrigated areas were also classified to assess the impact of the Covid-19 pandemic on agriculture. The comparison in irrigated areas between 2019 and 2020 facilitated an assessment of changes in irrigated areas in smallholder farming areas. The approach enhanced the classification accuracy of irrigated areas using ground-based training samples and very high-resolution images (VHRI) and fusion with existing datasets and the use of expert and local knowledge of the study area. The overall classification accuracy was 88%.
This report summarizes the findings of a collaborative effort to map and assess irrigated areas in the Limpopo Province, South Africa. The study was conducted by the International Water Management Institute (IWMI) in collaboration with the Department of Agriculture, Forestry and Fisheries (DAFF) and the Limpopo Department of Agriculture and Rural Development (LDARD), as part of the DAFF-supported ‘Revitalization of irrigation in South Africa’ project. Based on a combination of Landsat and Moderate Resolution Imaging Spectroradiometer (MODIS) satellite data, previous irrigated area mapping exercises carried out by DAFF and three-field ground truthing (GT) surveys, a total of 1.6 million hectares (Mha) of cropland were identified, with 262,000 ha actually irrigated in the 2015 winter season. The study also found that only 29% of all land equipped with center pivots was actually irrigated
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.