Personal, or subjective, probabilities are used as inputs to many inferential and decision-making models, and various procedures have been developed for the elicitation of such probabilities. Included among these elicitation procedures are scoring rules, which involve the computation of a score based on the assessor's stated probabilities and on the event that actually occurs. The development of scoring rules has, in general, been restricted to the elicitation of discrete probability distributions. In this paper, families of scoring rules for the elicitation of continuous probability distributions are developed and discussed.
This paper considers the maximization of certain equivalent reward generated by a Markov decision process with constant risk sensitivity. First, value iteration is used to optimize possibly time-varying processes of finite duration. Then a policy iteration procedure is developed to find the stationary policy with highest certain equivalent gain for the infinite duration case. A simple example demonstrates both procedures.
Abstract-We describe a broad class of problems, called "uncompromising problems," characterized by the requirement that solutions must perform optimally on each of many test cases. Many of the problems that have long motivated genetic programming research, including the automation of many traditional programming tasks, are uncompromising. We describe and analyze the recently proposed "lexicase" parent selection algorition and show that it can facilitate the solution of uncompromising problems by genetic programming. Unlike most traditional parent selection techniques, lexicase selection does not base selection on a fitness value that is aggregated over all test cases; rather, it considers test cases one at a time in random order. We present results comparing lexicase selection to more traditional parent selection methods, including standard tournament selection and implicit fitness sharing, on four uncompromising problems: finding terms in finite algebras, designing digital multipliers, counting words in files, and performing symbolic regression of the factorial function. We provide evidence that lexicase selection maintains higher levels of population diversity than other selection methods, which may partially explain its utility as a parent selection algorithm in the context of uncompromising problems.
An influence diagram is a graphical representation of a decision problem that is at once a formal description of a decision problem that can be treated by computers and a representation that is easily understood by decision makers who may be unskilled in the art of complex probabilistic modeling. The power of an influence diagram, both as an analysis tool and a communication tool, lies in its ability to concisely summarize the structure of a decision problem. However, when confronted with highly asymmetric problems in which particular acts or events lead to very different possibilities, many analysts prefer decision trees to influence diagrams. In this paper, we extend the definition of an influence diagram by introducing a new representation for its conditional probability distributions. This extended influence diagram representation, combining elements of the decision tree and influence diagram representations, allows one to clearly and efficiently represent asymmetric decision problems and provides an attractive alternative to both the decision tree and conventional influence diagram representations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.