In many applications, smooth processes generate data that is recorded under a variety of observational regimes, including dense sampling and sparse or fragmented observations that are often contaminated with error. The statistical goal of registering and estimating the individual underlying functions from discrete observations has thus far been mainly approached sequentially without formal uncertainty propagation, or in an application-specific manner by pooling information across subjects. We propose a unified Bayesian framework for simultaneous registration and estimation, which is flexible enough to accommodate inference on individual functions under general observational regimes. Our ability to do this relies on the specification of strongly informative prior models over the amplitude component of function variability using two strategies: a data-driven approach that defines an empirical basis for the amplitude subspace based on training data, and a shape-restricted approach when the relative location and number of extrema is well-understood. The proposed methods build on the elastic functional data analysis framework to separately model amplitude and phase variability inherent in functional data. We emphasize the importance of uncertainty quantification and visualization of these two components as they provide complementary information about the estimated functions. We validate the proposed framework using multiple simulation studies and real applications.
In many applications, smooth processes generate data that is recorded under a variety of observation regimes, such as dense, sparse or fragmented observations that are often contaminated with error. The statistical goal of registering and estimating the individual underlying functions from discrete observations has thus far been mainly approached sequentially without formal uncertainty propagation, or in an applicationspecific manner. We propose a unified Bayesian framework for simultaneous registration and estimation, which is flexible enough to accommodate inference on individual functions under general observation regimes. Our ability to do this relies on the specification of strongly informative prior models over the amplitude component of function variability. We provide two strategies for this critical choice: a data-driven approach that defines an empirical basis for the amplitude subspace based on training data, and a shape-restricted approach when the relative location and number of local extrema is well-understood. The proposed methods build on elastic functional data analysis, which separately models amplitude and phase variability inherent in functional data. We emphasize the importance of uncertainty quantification and visualization of these two components as they provide complementary information about the estimated functions. We validate the framework using simulations and real applications to medical imaging and biometrics.
Functional Principal Component Analysis (FPCA) is a prominent tool to characterize variability and reduce dimension of longitudinal and functional datasets. Bayesian implementations of FPCA are advantageous because of their ability to propagate uncertainty in subsequent modeling. To ease computation, many modeling approaches rely on the restrictive assumption that functional principal components can be represented through a pre-specified basis. Under this assumption, inference is sensitive to the basis, and misspecification can lead to erroneous results. Alternatively, we develop a flexible Bayesian FPCA model using Relaxed Mutually Orthogonal (ReMO) processes. We define ReMO processes to enforce mutual orthogonality between principal components to ensure identifiability of model parameters. The joint distribution of ReMO processes is governed by a penalty parameter that determines the degree to which the processes are mutually orthogonal and is related to ease of posterior computation. In comparison to other methods, FPCA using ReMO processes provides a more flexible, computationally convenient approach that facilitates accurate propagation of uncertainty. We demonstrate our proposed model using extensive simulation experiments and in an application to study the effects of breastfeeding status, illness, and demographic factors on weight dynamics in early childhood. Code is available on GitHub: https://github.com/jamesmatuk/ReMO-FPCA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.