Emotions are fundamental for human beings and play an important role in human cognition. Emotion is commonly associated with logical decision making, perception, human interaction, and to a certain extent, human intelligence itself. With the growing interest of the research community towards establishing some meaningful “emotional” interactions between humans and computers, the need for reliable and deployable solutions for the identification of human emotional states is required. Recent developments in using electroencephalography (EEG) for emotion recognition have garnered strong interest from the research community as the latest developments in consumer-grade wearable EEG solutions can provide a cheap, portable, and simple solution for identifying emotions. Since the last comprehensive review was conducted back from the years 2009 to 2016, this paper will update on the current progress of emotion recognition using EEG signals from 2016 to 2019. The focus on this state-of-the-art review focuses on the elements of emotion stimuli type and presentation approach, study size, EEG hardware, machine learning classifiers, and classification approach. From this state-of-the-art review, we suggest several future research opportunities including proposing a different approach in presenting the stimuli in the form of virtual reality (VR). To this end, an additional section devoted specifically to reviewing only VR studies within this research domain is presented as the motivation for this proposed new approach using VR as the stimuli presentation device. This review paper is intended to be useful for the research community working on emotion recognition using EEG signals as well as for those who are venturing into this field of research.
The ability to detect users’ emotions for the purpose of emotion engineering is currently one of the main endeavors of machine learning in affective computing. Among the more common approaches to emotion detection are methods that rely on electroencephalography (EEG), facial image processing and speech inflections. Although eye-tracking is fast in becoming one of the most commonly used sensor modalities in affective computing, it is still a relatively new approach for emotion detection, especially when it is used exclusively. In this survey paper, we present a review on emotion recognition using eye-tracking technology, including a brief introductory background on emotion modeling, eye-tracking devices and approaches, emotion stimulation methods, the emotional-relevant features extractable from eye-tracking data, and most importantly, a categorical summary and taxonomy of the current literature which relates to emotion recognition using eye-tracking. This review concludes with a discussion on the current open research problems and prospective future research directions that will be beneficial for expanding the body of knowledge in emotion detection using eye-tracking as the primary sensor modality.
Recognition and identification of aesthetic preference is indispensable in industrial design. Humans tend to pursue products with aesthetic values and make buying decisions based on their aesthetic preferences. The existence of neuromarketing is to understand consumer responses toward marketing stimuli by using imaging techniques and recognition of physiological parameters. Numerous studies have been done to understand the relationship between human, art and aesthetics. In this paper, we present a novel preference-based measurement of user aesthetics using electroencephalogram (EEG) signals for virtual 3D shapes with motion. The 3D shapes are designed to appear like bracelets, which is generated by using the Gielis superformula. EEG signals were collected by using a medical grade device, the B-Alert X10 from advance brain monitoring, with a sampling frequency of 256 Hz and resolution of 16 bits. The signals obtained when viewing 3D bracelet shapes were decomposed into alpha, beta, theta, gamma and delta rhythm by using time-frequency analysis, then classified into two classes, namely like and dislike by using support vector machines and K-nearest neighbors (KNN) classifiers respectively. Classification accuracy of up to 80 % was obtained by using KNN with the alpha, theta and delta rhythms as the features extracted from frontal channels, Fz, F3 and F4 to classify two classes, like and dislike.Keywords Neuro-aesthetics Á Electroencephalogram (EEG) Á Brain-computer interface (BCI) Á 3-Dimensional (3D) shape preference Á Aesthetic design Á Support vector machines (SVM) Á K-nearest neighbors (KNN)
Design is a challenging task that is crucial to all product development. Advances in design computing may allow machines to move from a supporting role to generators of design content. Generative Design systems produce designs by algorithms and offer the potential for the exploration of vast design spaces, the fostering of creativity, the combination of objective and subjective requirements, and the revolutionary integration of conceptual and detailed design phases. The application of generative methods to the design of discrete, physical, engineered products has not yet been reviewed. This paper reviews the Generative Product Design systems developed since 1998 in order to identify significant approaches and trends. Systems are analyzed according to their primary goal, generative method, the design phase they focus on, whether the generation is automatic or interactive, the number of design options they generate, and the types of design requirements involved in the generation process. Progress using this approach is recognized, and a number of challenges that must be addressed in order to achieve widespread acceptance are identified. Possible solutions are offered, including innovative approaches in Human–Computer Interaction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.