The sums of some series that can be linked byare derived and some useful results arising from their validity within appropriate radius of convergence are provided. The sums of some related series of real numbers are also obtained.
This study investigates the influence of a circular crack breaker on mode-III deformation behavior of a semi-infinite crack in a homogeneous, elastic orthotropic material subjected to longitudinal shear loads. The Galilean transformation is employed to convert the governing wave equation to Laplace’s equation which is time independent, rendering the problem amenable to analysis within the realm of the classical theory of two-dimensional elasticity. Considering the geometrical configuration of the problem, the analytical solution of the problem is possible if the problem is transformed using the appropriate mapping function. Our construction of a holomorphic function that maps the circular hole into a straight line with the edge terminating at the origin is a novelty which enables the use of integral transform method to obtain an analytic solution of the displacement, leading to closed-form expression for mode-III stress intensity factor, $$K_{111}$$
K
111
. The asymptotic values of the fields are obtained and shown to depend on the radius of the crack breaker. A parametric study shows that, for a fixed loading interval, a crack breaker of larger radius leads to increased stress intensity factor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.