RNA modifications are widespread in biology and abundant in ribosomal RNA. However, the importance of these modifications is not well understood. We show that methylation of a single nucleotide, in the catalytic center of the large subunit, gates ribosome assembly. Massively parallel mutational scanning of the essential nuclear GTPase Nog2 identified important interactions with rRNA, particularly with the 2′-O-methylated A-site base Gm2922. We found that methylation of G2922 is needed for assembly and efficient nuclear export of the large subunit. Critically, we identified single amino acid changes in Nog2 that completely bypass dependence on G2922 methylation and used cryoelectron microscopy to directly visualize how methylation flips Gm2922 into the active site channel of Nog2. This work demonstrates that a single RNA modification is a critical checkpoint in ribosome biogenesis, suggesting that such modifications can play an important role in regulation and assembly of macromolecular machines.
RNA modifications are widespread in biology, and particularly abundant in ribosomal RNA. However, the significance of these modifications is not well understood. We show that methylation of a single universally conserved nucleotide, in the catalytic center of the large subunit, gates ribosome assembly. Massively parallel mutational scanning of the essential nuclear GTPase Nog2 identified important interactions with ribosomal RNA helix 92, particularly with the methylated A-site base Gm2922. We found that 2'-O-methylation of G2922 is needed for efficient nuclear export of the large subunit. Critically, we identified single amino acid changes in Nog2 that completely bypass its dependence on G2922 methylation. By solving the cryo-EM structure of the unmodified nascent subunit, we reveal how methylation flips Gm2922 into the active site channel of Nog2. This work demonstrates that a single RNA modification is a critical checkpoint in ribosome biogenesis, and suggests that RNA modifications can play an important role in regulation and assembly of macromolecular machines.
Buchnera aphidicola is an intracellular bacterial symbiont of aphids and maintains a small genome of only 600 kbps. Buchnera is thought to maintain only genes relevant to the symbiosis with its aphid host. Curiously, the Buchnera genome contains gene clusters coding for flagellum basal body structural proteins and for flagellum type III export machinery. These structures have been shown to be highly expressed and present in large numbers on Buchnera cells. No recognizable pathogenicity factors or secreted proteins have been identified in the Buchnera genome, and the relevance of this protein complex to the symbiosis is unknown. Here, we show isolation of Buchnera flagellum basal body proteins from the cellular membrane of Buchnera, confirming the enrichment of flagellum basal body proteins relative to other proteins in the Buchnera proteome. This will facilitate studies of the structure and function of the Buchnera flagellum structure, and its role in this model symbiosis.
Buchnera aphidicola is an intracellular bacterial symbiont of aphids and maintains a small genome of only 600 kbps. Buchnera is thought to maintain only genes relevant to the symbiosis with its aphid host. Curiously, the Buchnera genome contains gene clusters coding for flagellum basal body structural proteins and for flagellum type III export machinery. These structures have been shown to be highly expressed and present in large numbers on Buchnera cells. No recognizable pathogenicity factors or secreted proteins have been identified in the Buchnera genome, and the relevance of this protein complex to the symbiosis is unknown. Here, we show isolation of Buchnera flagella from the cellular membrane of Buchnera, confirming the enrichment of flagellum proteins relative to other proteins in the Buchnera proteome. This will facilitate studies of the structure and function of the Buchnera flagellum structure, and its role in this model symbiosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.