Pexophagy, peroxysome autophagy, is regulated in Saccharomyces cerevisiae by Atg36 by direct binding to peroxysome regulator Pex3, Atg8 and Atg11 of the core autophagy machinery.
†These authors contributed equally to this work.We have cloned a member of the reticulon (RTN) family of Arabidopsis thaliana (RTNLB13). When fused to yellow fluorescent protein (YFP) and expressed in tobacco leaf epidermal cells, RTNLB13 is localized in the endoplasmic reticulum (ER). Coexpression of a soluble ER luminal marker reveals that YFP-tagged, myc-tagged or untagged RTNLB13 induces severe morphological changes to the lumen of the ER. We show, using fluorescence recovery after photobleaching (FRAP) analysis, that RTNLB13 overexpression greatly reduces diffusion of soluble proteins within the ER lumen, possibly by introducing constrictions into the membrane. In spite of this severe phenotype, Golgi shape, number and dynamics appear unperturbed and secretion of a reporter protein remains unaffected.
ERK5 is a mitogen-activated protein (MAP) kinase regulated in human cells by diverse mitogens and stresses but also suspected of mediating the effects of a number of oncogenes. Its expression in the slt2⌬ Saccharomyces cerevisiae mutant rescued several of the phenotypes caused by the lack of Slt2p (Mpk1p) cell integrity MAP kinase. ERK5 is able to provide this cell integrity MAP kinase function in yeast, as it is activated by the cell integrity signaling cascade that normally activates Slt2p and, in its active form, able to stimulate at least one key Slt2p target (Rlm1p, the major transcriptional regulator of cell wall genes). In vitro ERK5 kinase activity was abolished by Hsp90 inhibition. ERK5 activity in vivo was also lost in a strain that expresses a mutant Hsp90 chaperone. Therefore, human ERK5 expressed in yeast is an Hsp90 client, despite the widely held belief that the protein kinases of the MAP kinase class are non-Hsp90-dependent activities. Two-hybrid and protein binding studies revealed that strong association of Hsp90 with ERK5 requires the dual phosphorylation of the TEY motif in the MAP kinase activation loop. These phosphorylations, at positions adjacent to the Hsp90-binding surface recently identified for a number of protein kinases, may cause a localized rearrangement of this MAP kinase region that leads to creation of the Hsp90-binding surface. Complementation of the slt2⌬ yeast defect by ERK5 expression establishes a new tool with which to screen for novel agonists and antagonists of ERK5 signaling as well as for isolating mutant forms of ERK5.Mitogen-activated protein kinase (MAPK) modules consist of 3 protein kinases that stimulate each other in series (MAP3K 3 MAP2K 3 MAPK), resulting in the activation of the terminal and often multifunctional MAPK. These signaling cascades are key components of the highly interactive protein kinase networks in eukaryotic cells. As their name implies, some MAPKs initiate a proliferative response. Others control pathways of embryogenesis, differentiation, stress responses, and cell death (42). Association of MAPK modules with scaffold proteins appears to be one way of ensuring that each MAPK only becomes activated in response to the correct extracellular stimuli or stress signals (52). Once activated, this MAPK can then proceed to phosphorylate its substrates, the latter being often involved in both short-term and longer-term (e.g., transcription-mediated) cellular changes. Many MAPKs have substrates in both the cytoplasm and the nucleus, such that nuclear import/export mechanisms frequently govern their accessibility to their substrates. The final outcome of any MAPK activation event is presumably dictated by this substrate availability in any given cell type, by an intrinsic substrate specificity directed by the docking interaction of the MAPK with its substrates, and by signal attenuation. The latter involves the intervention of the protein phosphatases that, by dephosphorylating and thereby deactivating the MAPK, modulate both the intensity and the dura...
Turnover of damaged, dysfunctional, or excess organelles is critical to cellular homeostasis. We screened mutants disturbed in peroxisomal protein import, and found that a deficiency in the exportomer subunits Pex1, Pex6, and Pex15 results in enhanced turnover of peroxisomal membrane structures compared with other mutants. Strikingly, almost all peroxisomal membranes were associated with phagophore assembly sites in pex1Δ atg1Δ cells. Degradation depended on Atg11 and the pexophagy receptor Atg36, which mediates degradation of superfluous peroxisomes. Mutants of PEX1, PEX6, and PEX15 accumulate ubiquitinated receptors at the peroxisomal membrane. This accumulation has been suggested to trigger pexophagy in mammalian cells. We show by genetic analysis that preventing this accumulation does not abolish pexophagy in Saccharomyces cerevisiae. We find Atg36 is modified in pex1Δ cells even when Atg11 binding is prevented, suggesting Atg36 modification is an early event in the degradation of dysfunctional peroxisomal structures in pex1Δ cells via pexophagy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.