A statistical technique for the pore-scale analyses of heterogeneity and representative elemental volume (REV) in unconventional shale rocks is hereby presented. First, core samples were obtained from shale formations. The images were scanned using microcomputed tomography (micro-CT) machine at 6.7 lm resolution with voxels of 990 9 990 9 1000. These were then processed, digitised, thresholded, segmented and features captured using numerical algorithms. This allows the segmentation of each sample into four distinct morphological entities consisting of pores, organic matter, shale grains and minerals. In order to analyse the degree of heterogeneity, Eagle Ford parallel sample was further cropped into 96 subsamples. Descriptive statistical approach was then used to evaluate the existence of heterogeneity within the subsamples. Furthermore, the Eagle Ford parallel and perpendicular samples were analysed for volumetric entities representative of the petrophysical variable, porosity, using corner point cropping technique. The results of porosity REV for Eagle ford parallel and perpendicular indicated sample representation at 300 lm voxel edge. Both pore volume distribution and descriptive statistical analyses suggested that a wide variation of heterogeneity exists at this scale of investigation. Furthermore, this experiment allows for adequate extraction of necessary information and structural parameters for pore-scale modelling and simulation. Additional studies focusing on re-evaluation at higher resolution are recommended.
Producing an oilfield in a cost-effective way depends on how long water production could be delayed in the reservoir. Many flow mechanisms, correlations, and methods to calculate maximum water-free oil production rate have been published, However, those methods have generally failed to not consider the skin effect which affects the flow into the wellbore. In this paper, the semi-analytical perforation skin model as presented by Karakas and Tariq is incorporated into the Meyer and Garder correlation for critical oil rate from a perforated vertical well interval to obtain the maximum water-free oil production rate and optimal perforation parameters. The resulting coupled computational model is used to determine the sensitivity of the maximum water-free oil production rate to wellbore perforation parameters. Whilst an increase in perforation length and decrease in spacing between perforation increase the critical flow rate, an increase in perforation radius did not translate to higher productivity. The optimal perforation angles are 45° and 60°, however, for the data used in this work the maximum water-free oil rate of 23.2 std/d was obtained at 45° of phasing angle, 1 in of spacing between perforation, 0.36 in of perforation radius and 48 in of perforation length. Thus, the perforation strategy can be optimized prior to drilling and completion operations to improve productivity using the computational model presented in this work.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.