A new technique has been developed for the facile location of pseudouridylate (psi) residues in any RNA molecule. The method uses two known modification procedures which in combination uniquely identify U residues which have been converted into psi. The first procedure involves reaction of all U-like and G-like residues with N-cyclohexyl-N'-beta-(4-methylmorpholinium)ethylcarbodiimide p-tosylate (CMC), followed by alkaline removal of all CMC groups except those linked to the N3 of psi. This stops reverse transcription, resulting in a gel band which identifies the U residue. The second procedure is uridine-specific hydrazinolysis which cleaves the RNA chain at all U residues and produces a gel band upon reverse transcription. psi residues, being resistant to hydrazinolysis, are not cleaved and do not stop reverse transcription. This leads to the absence of a band at psi residues. The combined method can also distinguish psi from 5-methyluridine, 4-thiouridine, uridine-5-oxyacetic acid, and 2-thio-5-methylaminomethyluridine as shown by treating rRNA and tRNA species known to contain these modified bases at defined sites. By this procedure, four new sites for psi in Escherichia coli 23S RNA were discovered, and one was disproven. The four new sites are at positions 2457, 2504, 2580, and 2605. The erroneous site is at position 2555. These four new psi residues, which are all in or within 2-3 residues of the peptidyltransferase ring, are thus in a position to play a functional and/or structural role at the peptidyltransferase center.(ABSTRACT TRUNCATED AT 250 WORDS)
Pseudouridines are found in virtually all ribosomal RNAs but their function is unknown. There are four to eight times more pseudouridines in eukaryotes than in eubacteria. Mapping 19 Haloarcula marismortui pseudouridines on the three-dimensional 50S subunit does not show clustering. In bacteria, specific enzymes choose the site of pseudouridine formation. In eukaryotes, and probably also in archaea, selection and modification is done by a guide RNA^protein complex. No unique specific role for ribosomal pseudouridines has been identified. We propose that pseudouridine's function is as a molecular glue to stabilize required RNA conformations that would otherwise be too flexible. ß 2002 Published by Elsevier Science B.V. on behalf of the Federation of European Biochemical Societies.
Functional 30S ribosomes were reconstructed from total Escherichia coli 30S ribosomal proteins and 16S ribosomal RNA synthesized in vitro by T7 RNA polymerase. Up to 700 mol of RNA/mol of template could be obtained. The transcript lacked all ten normally modified bases and had three additional 5' G residues, an A----G change at position 2, and, in 22% of the molecules, one or two extra 3' residues. The synthetic 16S RNA could be assembled into a particle that cosedimented with authentic 30S and was indistinguishable from 30S by electron microscopy. When supplemented with the 50S subunit, the particles bound tRNA to the 70S P site in a codon- and Mg2+-dependent manner. The specific binding activity was 94% that of particles reconstituted with natural rRNA and 52% that of native 30S. Cross-linking to P site bound tRNA was also preserved. Changing C-1400, the residue known to be close to the anticodon of P site bound tRNA, to A had little effect on reconstitution, but the C----G substitution caused a marked inhibition of assembly. tRNA could bind to both reconstituted mutants, but cross-linking was greatly reduced. These results show that none of the modified bases of 16S RNA are essential for P site binding and that position 1400 may be more important for ribosome assembly than for tRNA binding. Base-specific in vitro mutagenesis can now be used to explore in detail the functional properties of individual residues in ribosomal RNA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.