Recent results of the searches for Supersymmetry in final states with one or two leptons at CMS are presented. Many Supersymmetry scenarios, including the Constrained Minimal Supersymmetric extension of the Standard Model (CMSSM), predict a substantial amount of events containing leptons, while the largest fraction of Standard Model background events -which are QCD interactions -gets strongly reduced by requiring isolated leptons. The analyzed data was taken in 2011 and corresponds to an integrated luminosity of approximately L = 1 fb −1 . The center-of-mass energy of the pp collisions was √ s = 7 TeV.
Current analyses of the LHC data put stringent bounds on strongly interacting supersymmetric particles, restricting the masses of squarks and gluinos to be above the TeV scale. However, the supersymmetric electroweak sector is poorly constrained. In this article we explore the consistency of possible LHC missing energy signals with the broader phenomenological structure of the electroweak sector in low energy supersymmetry models. As an example, we focus on the newly developed Recursive Jigsaw Reconstruction analysis by ATLAS, which reports interesting event excesses in channels containing dilepton and tri-lepton final states plus missing energy. We show that it is not difficult to obtain compatibility of these LHC data with the observed dark matter relic density, the bounds from dark matter direct detection experiments, and the measured anomalous magnetic moment of the muon. We provide analytical expressions which can be used to understand the range of gaugino masses, the value of the Higgsino mass parameter, the heavy Higgs spectrum, the ratio of the Higgs vacuum expectation values tan β, and the slepton spectrum obtained in our numerical analysis of these observables.
The EUROnu project has studied three possible options for future, high intensity neutrino oscillation facilities in Europe. The first is a Super Beam, in which the neutrinos come from the decay of pions created by bombarding targets with a 4 MW proton beam from the CERN High Power Superconducting Proton Linac. The far detector for this facility is the 500 kt MEMPHYS water Cherenkov, located in the Fr\'ejus tunnel. The second facility is the Neutrino Factory, in which the neutrinos come from the decay of {\mu}+ and {\mu}- beams in a storage ring. The far detector in this case is a 100 kt Magnetised Iron Neutrino Detector at a baseline of 2000 km. The third option is a Beta Beam, in which the neutrinos come from the decay of beta emitting isotopes, in particular 6He and 18Ne, also stored in a ring. The far detector is also the MEMPHYS detector in the Fr\'ejus tunnel. EUROnu has undertaken conceptual designs of these facilities and studied the performance of the detectors. Based on this, it has determined the physics reach of each facility, in particular for the measurement of CP violation in the lepton sector, and estimated the cost of construction. These have demonstrated that the best facility to build is the Neutrino Factory. However, if a powerful proton driver is constructed for another purpose or if the MEMPHYS detector is built for astroparticle physics, the Super Beam also becomes very attractive
The Higgs boson was postulated nearly five decades ago within the framework of the standard model of particle physics and has been the subject of numerous searches at accelerators around the world. Its discovery would verify the existence of a complex scalar field thought to give mass to three of the carriers of the electroweak force—the W+, W–, and Z0 bosons—as well as to the fundamental quarks and leptons. The CMS Collaboration has observed, with a statistical significance of five standard deviations, a new particle produced in proton-proton collisions at the Large Hadron Collider at CERN. The evidence is strongest in the diphoton and four-lepton (electrons and/or muons) final states, which provide the best mass resolution in the CMS detector. The probability of the observed signal being due to a random fluctuation of the background is about 1 in 3 × 106. The new particle is a boson with spin not equal to 1 and has a mass of about 125 giga–electron volts. Although its measured properties are, within the uncertainties of the present data, consistent with those expected of the Higgs boson, more data are needed to elucidate the precise nature of the new particle
In a recent work, we emphasized that an excess in tri-lepton events plus missing energy observed by the ATLAS experiment at the LHC could be interpreted as a signal of low energy supersymmetry. In such a scenario the lightest neutralino mass is approximately m χ ≃ 60 GeV and the direct Dark Matter detection cross section is naturally below the current bound. In this work we present simple extensions of this scenario that lead to an explanation of the gamma ray excess at the center of the galaxy observed by Fermi-LAT, as well as the anti-proton excess observed by AMS-02. These extensions include the addition of a small CP violating phase in the neutralino sector or the addition of a light CP-odd Higgs scalar. Our study is of special relevance in view of a recent analysis that casts doubt on the previously accepted preference for mili-second pulsars as the origin of the galactic center excess.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.