BackgroundIn large scale cooking, food is handled by many individuals, thereby increasing the chances of food contamination due to improper handling. Deliberate or accidental contamination of food during large scale production might endanger the health of consumers, and have very expensive repercussions on a country. The purpose of this study was to evaluate the food safety knowledge, attitudes, and practices among institutional food- handlers in Ghana.MethodsThe study was conducted using a descriptive, cross-sectional survey of 29 institutions by conducting face to face interview and administration of questionnaire to two hundred and thirty-five (235) institutional food-handlers. The questionnaire was peer-reviewed and pilot tested in three institutions in the Upper East Region of Ghana, before the final version was distributed to food-handlers. The questionnaire was structured into five distinctive parts to collect information on (i) demographic characteristics, (ii) employees’ work satisfaction, (iii) knowledge on food safety, (iv) attitudes towards food safety and (v) food hygiene practices.ResultsMajority of the food-handlers were between 41–50 years (39.1%). Female respondents were (76.6%). In our study, the food-handlers were knowledgeable about hygienic practices, cleaning and sanitation procedures. Almost all of the food-handlers were aware of the critical role of general sanitary practices in the work place, such as hand washing (98.7% correct answers), using gloves (77.9%), proper cleaning of the instruments/utensils (86.4%) and detergent use (72.8%). On disease transmission, the results indicates that 76.2% of the food- handlers did not know that Salmonella is a food borne pathogens and 70.6% did not know that hepatitis A is a food borne pathogen. However, 81.7% handlers agreed that typhoid fever is transmitted by food and 87.7% agreed that bloody diarrhea is transmitted by food. Logistic regression analysis testing four models showed statistically significant differences (p < 0.05), for models in which the explanatory variable was the level of education.ConclusionsIn generally, the institutional food-handlers have satisfactory knowledge in food safety but this does not translate into strict hygienic practices during processing and handling food products.
Background B. cereus are of particular interest in food safety and public health because of their capacity to cause food spoilage and disease through the production of various toxins. The aim of this study was to determine the prevalence, virulence factor genes and antibiotic resistance profile of B. cereus sensu lato isolated from cattle grazing soils and dairy products in Ghana. A total of 114 samples made up of 25 soil collected from cattle grazing farm land, 30 raw milk, 28 nunu (yoghurt-like product) and 31 woagashie (West African soft cheese). Ninety-six B. cereus sensu lato isolates from 54 positive samples were screened by PCR for the presence of 8 enterotoxigenic genes (hblA, hblC, hblD, nheA, nheB, nheC, cytK and entFM), and one emetic gene (ces). Phenotypic resistance to 15 antibiotics were also determined for 96 B. cereus sensu lato isolates.ResultsAbout 72% (18 of 25 soil), 47% (14 of 30 raw milk), 35% (10 of 28 nunu) and 39% (12 of 31 woagashi) were positive for B. cereus sensu lato with mean counts (log10 cfu/g) of 4.2 ± 1.8, 3.3 ± 2.0, 1.8 ± 1.4 and 2.6 ± 1.8 respectively. The distribution of enterotoxigenic genes revealed that 13% (12/96 isolates) harboured all three gene encoding for haemolytic enterotoxin HBL complex genes (hblA, hblC and hblD), 25% (24/96 isolates) possessed no HBL gene, whereas 63% (60/96 isolates) possessed at least one of the three HBL genes. All three genes encoding for non-haemolytic enterotoxin (nheA, nheB and nheC) were detected in 60% (57/96) isolates, 14% (13/96) harboured only one gene, 19% (18/96) whereas 8% possessed none of the NHE genes. The detection rates of cytk, entFM, and ces genes were 75, 67 and 9% respectively. Bacillus cereus s. l. isolates were generally resistant to β-lactam antibiotics such as ampicillin (98%), oxacillin (92%), penicillin (100%), amoxicillin (100%), and cefepime (100%) but susceptible to other antibiotics tested.Conclusions Bacillus cereus s. l. is prevalent in soil, raw milk and dairy products in Ghana. However, loads are at levels considered to be safe for consumption. Various enterotoxin genes associated with virulence of B. cereus are widespread among the isolates.
In Africa, milk production, processing and consumption are integral part of traditional food supply, with dairy products being a staple component of recommended healthy diets. This review provides an overview of the microbial safety characteristics of milk production and fermented dairy products in Africa. The object is to highlight the main microbial food safety hazards in the dairy chain and to propose appropriate preventive and control measures. Pathogens of public health concern including Mycobacterium bovis, Brucella abortus and Coxiella burnettii, which have largely been eradicated in many developed nations, still persist in the dairy chain in Africa. Factors such as the natural antimicrobial systems in milk and traditional processing technologies, including fermentation, heating and use of antimicrobial additives, that can potentially contribute to microbial safety of milk and dairy products in Africa will be discussed. Practical approaches to controlling safety hazards in the dairy chain in Africa have been proposed. Governmental regulatory bodies need to set the necessary national and regional safety standards, perform inspections and put measures in place to ensure that the standards are met, including strong enforcement programs within smallholder dairy chains. Dairy chain actors would require upgraded knowledge and training in preventive approaches such as good agricultural practices (GAP), hazard analysis and critical control points (HACCP) design and implementation and good hygienic practices (GHPs). Food safety education programs should be incorporated into school curricula, beginning at the basic school levels, to improve food safety cognition among students and promote life-long safe food handling behaviour.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.