The redox potentials of 25 cyclic nitroxides from four different structural classes (pyrrolidine, piperidine, isoindoline, and azaphenalene) were determined experimentally by cyclic voltammetry in acetonitrile, and also via high-level ab initio molecular orbital calculations. It is shown that the potentials are influenced by the type of ring system, ring substituents and/or groups surrounding the radical moiety. For the pyrrolidine, piperidine, and isoindolines there is excellent agreement (mean absolute deviation of 0.05 V) between the calculated and experimental oxidation potentials; for the azaphenalenes, however, there is an extraordinary discrepancy (mean absolute deviation of 0.60 V), implying that their one-electron oxidation might involve additional processes not considered in the theoretical calculations. This recently developed azaphenalene class of nitroxide represents a new variant of a nitroxide ring fused to an aromatic system and details of the synthesis of five derivatives involving differing aryl substitution are also presented.
This paper presents a review on the use of tethered nitroxide–fluorophore molecules as probes of oxidative change and free radical generation and reaction. The proximity of the nitroxide free radical to the fluorophore suppresses the normal fluorescence emission process. Nitroxide free radical scavenging, metabolism or redox chemistry return the system to its natural fluorescent state and so these tethered nitroxide–fluorophore molecules are described as being profluorescent. A survey of profluorescent nitroxides found in the literature is provided as well as background on the mechanism of action and applications of these compounds as fluorometric probes within the fields of biological, materials and environmental sciences.
The wavelength-dependent conversion of two rapid photoinduced ligation reactions, i.e., the light activation of o-methylbenzaldehydes, leading to the formation of reactive o-quinodimethanes (photoenols), and the photolysis of 2,5-diphenyltetrazoles, affording highly reactive nitrile imines, is probed via a monochromatic wavelength scan at constant photon count. The transient species are trapped by cycloaddition with N-ethylmaleimide, and the reactions are traced by high resolution mass spectrometry and nuclear magnetic resonance spectroscopy. The resulting action plots are assessed in the context of Beer-Lambert's law and provide combined with time-dependent density functional theory and multireference calculations an in-depth understanding of the underpinning mechanistic processes, including conical intersections. The π → π* transition of the carbonyl group of the o-methylbenzaldehyde correlates with a highly efficient conversion to the cycloadduct, showing no significant wavelength dependence, while conversion following the n → π* transition proceeds markedly less efficient at longer wavelengths. The influence of absorbance and reactivity has critical consequences for an effective reaction design: At high concentrations of o-methylbenzaldehydes (c = 8 mmol L), photoligations with N-ethylmaleimide (possible for λ ≤ 390 nm) are ideally performed at 330 nm, whereas at high light penetration regimes at lower concentrations (c = 0.3 mmol L), 315 nm irradiation leads to the highest conversion. Activation and trapping of 2,5-diphenyltetrazoles (possible for λ ≤ 322 nm) proceeds best at a wavelength shorter than 295 nm, irrespective of concentration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.