New York City (NYC) is representative of many vulnerable coastal urban populations, infrastructures, and economies threatened by global sea level rise. The steady loss of marshes in NYC’s Jamaica Bay is typical of many urban estuaries worldwide. Essential to the restoration and preservation of these key wetlands is an understanding of their sedimentation. Here we present a reconstruction of the history of mineral and organic sediment fluxes in Jamaica Bay marshes over three centuries, using a combination of density measurements and a detailed accretion model. Accretion rate is calculated using historical land use and pollution markers, through a wide variety of sediment core analyses including geochemical, isotopic, and paleobotanical analyses. We find that, since 1800 CE, urban development dramatically reduced the input of marsh-stabilizing mineral sediment. However, as mineral flux decreased, organic matter flux increased. While this organic accumulation increase allowed vertical accumulation to outpace sea level, reduced mineral content causes structural weakness and edge failure. Marsh integrity now requires mineral sediment addition to both marshes and subsurface channels and borrow pits, a solution applicable to drowning estuaries worldwide. Integration of marsh mineral/organic accretion history with modeling provides parameters for marsh preservation at specific locales with sea level rise.
Salt marshes provide important habitats for many species in the estuaries along the east and Gulf coasts of North America. With many species dependent on these coastal marshlands and extensive documentation that these marshlands are disappearing, a clear understanding of the mechanisms causing loss is critical. Much of the salt marsh was lost to reclamation and construction before these activities were curtailed circa 1970; however, losses due to other causes have continued and multiple hypothesized causes have been proposed, not all mutually exclusive. Yet it remains unclear whether there are legacy effects from the reclamation projects. When the edges of salt marshes are cut into, and gentle vegetated slopes are replaced by sharp edges adjoining deep water of 2 m or more, erosion could accelerate and could continue for many years. One method that may help shed light on the relative importance of the various causes of salt marsh erosion would be to compare the erosion rates of specific edges within a marshland that are exposed to particular conditions. We therefore used several sets of aerial photography spanning 84 years to track the changes at specific edge locations along marsh edges and then make comparisons between anthropogenically created edges and naturally created edges, including comparisons within use and width categories of navigational channels. Erosion rates were found to remain significantly higher on channelized edges than along otherwise similar wetland edges even several decades after modification. Likely reasons include the continued exposure of underlying layers that lack reinforcing plant root systems, vertical edges that are more vulnerable to undermining from wave action, and increased erosion related to altered tidal flows.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.