Response inhibition is essential for navigating everyday life. Its derailment is considered integral to numerous neurological and psychiatric disorders, and more generally, to a wide range of behavioral and health problems. Response-inhibition efficiency furthermore correlates with treatment outcome in some of these conditions. The stop-signal task is an essential tool to determine how quickly response inhibition is implemented. Despite its apparent simplicity, there are many features (ranging from task design to data analysis) that vary across studies in ways that can easily compromise the validity of the obtained results. Our goal is to facilitate a more accurate use of the stop-signal task. To this end, we provide 12 easy-to-implement consensus recommendations and point out the problems that can arise when they are not followed. Furthermore, we provide user-friendly open-source resources intended to inform statistical-power considerations, facilitate the correct implementation of the task, and assist in proper data analysis.
Determining whether a person with stroke has reached their full potential for recovery is difficult. While techniques such as transcranial magnetic stimulation (TMS) and MRI have some prognostic value, their role in rehabilitation is undefined. This study used TMS and MRI to determine which factors predict functional potential, defined as an individual's capacity for further functional improvement at least 6 months following stroke. We studied 21 chronic stroke patients with upper limb impairment. The functional integrity of the corticospinal tracts (CSTs) was assessed using TMS and functional MRI. The presence or absence of motor-evoked responses (MEPs) to TMS in the affected upper limb, and the lateralization of cortical activity during affected hand use were determined. The structural integrity of the CST was assessed using MRI, and diffusion tensor imaging was used to measure the asymmetry in fractional anisotropy (FA) of the internal capsules. A multiple linear regression analysis was performed, to predict both clinical score at inception and change in clinical score for 17 patients who completed a 30 day programme of motor practice with the affected upper limb. The main findings were that in patients with MEPs, meaningful gains were still possible 3 years after stroke, although the capacity for improvement declined with time. In patients without MEPs, functional potential declines with increasing CST disruption, with no meaningful gains possible if FA asymmetry exceeds a value of 0.25. This study is the first to demonstrate the complementary nature of TMS and MRI techniques in predicting functional potential in chronic stroke patients. An algorithm is proposed for the selection of individualized rehabilitation strategies, based on the prediction of functional potential. These strategies could include neuromodulation using a range of emerging techniques, to prime the motor system for a plastic response to rehabilitation.
. Volitional inhibition is the voluntary prevention of a prepared movement. Here we ask whether primary motor cortex (M1) is a site of convergence of cortical activity associated with movement preparation and volitional inhibition. Volitional inhibition was studied by presenting a stop signal before execution of an anticipated response that requires a key lift to intercept a revolving dial. Motor evoked potentials (MEPs) were elicited in intrinsic hand muscles by transcranial magnetic stimulation (TMS) to assess corticomotor excitability and short interval intracortical inhibition (sICI) during task performance. The closer the stop cue was presented to the anticipated response, the harder it was for subjects to inhibit their response. Corticomotor pathway excitability was temporally modulated during volitional inhibition. Using subthreshold TMS, corticomotor excitability was reduced for Stop trials relative to Go trials from 140 ms after the cue. sICI was significantly greater for Stop trials compared with Go trials at a time that preceded the onset of muscle activity associated with the anticipated response. These results provide evidence that volitional inhibition is exerted at a cortical level and that inhibitory networks within M1 contribute to volitional inhibition of prepared action.
After stroke, the function of primary motor cortex (M1) between the hemispheres may become unbalanced. Techniques that promote a re-balancing of M1 excitability may prime the brain to be more responsive to rehabilitation therapies and lead to improved functional outcomes. The present study examined the effects of Active-Passive Bilateral Therapy (APBT), a putative movement-based priming strategy designed to reduce intracortical inhibition and increase excitability within the ipsilesional M1. Thirty-two patients with upper limb weakness at least 6 months after stroke were randomized to a 1-month intervention of self-directed motor practice with their affected upper limb (control group) or to APBT for 10-15 min prior to the same motor practice (APBT group). A blinded clinical rater assessed upper limb function at baseline, and immediately and 1 month after the intervention. Transcranial magnetic stimulation was used to assess M1 excitability. Immediately after the intervention, motor function of the affected upper limb improved in both groups (P < 0.005). One month after the intervention, the APBT group had better upper limb motor function than control patients (P < 0.05). The APBT group had increased ipsilesional M1 excitability (P < 0.025), increased transcallosal inhibition from ipsilesional to contralesional M1 (P < 0.01) and increased intracortical inhibition within contralesional M1 (P < 0.005). None of these changes were found in the control group. APBT produced sustained improvements in upper limb motor function in chronic stroke patients and induced specific and sustained changes in motor cortex inhibitory function. We speculate that APBT may have facilitated plastic reorganization in the brain in response to motor therapy. The utility of APBT as an adjuvant to physical therapy warrants further consideration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.