We analyzed the transcriptome of Escherichia coli K-12 by strand-specific RNA sequencing at single-nucleotide resolution during steady-state (logarithmic-phase) growth and upon entry into stationary phase in glucose minimal medium. To generate high-resolution transcriptome maps, we developed an organizational schema which showed that in practice only three features are required to define operon architecture: the promoter, terminator, and deep RNA sequence read coverage. We precisely annotated 2,122 promoters and 1,774 terminators, defining 1,510 operons with an average of 1.98 genes per operon. Our analyses revealed an unprecedented view of E. coli operon architecture. A large proportion (36%) of operons are complex with internal promoters or terminators that generate multiple transcription units. For 43% of operons, we observed differential expression of polycistronic genes, despite being in the same operons, indicating that E. coli operon architecture allows fine-tuning of gene expression. We found that 276 of 370 convergent operons terminate inefficiently, generating complementary 3′ transcript ends which overlap on average by 286 nucleotides, and 136 of 388 divergent operons have promoters arranged such that their 5′ ends overlap on average by 168 nucleotides. We found 89 antisense transcripts of 397-nucleotide average length, 7 unannotated transcripts within intergenic regions, and 18 sense transcripts that completely overlap operons on the opposite strand. Of 519 overlapping transcripts, 75% correspond to sequences that are highly conserved in E. coli (>50 genomes). Our data extend recent studies showing unexpected transcriptome complexity in several bacteria and suggest that antisense RNA regulation is widespread.
RNA sequencing has emerged as the premier approach to study bacterial transcriptomes. While the earliest published studies analyzed the data qualitatively, the data are readily digitized and lend themselves to quantitative analysis. High-resolution RNA sequence (RNA-seq) data allows transcriptional features (promoters, terminators, operons, etc.) to be pinpointed on any bacterial transcriptome. Once the transcriptome is mapped, the activity of transcriptional features can be quantified. Here we highlight how quantitative transcriptome analysis can reveal biological insights and briefly discuss some of the challenges to be faced by the field of bacterial transcriptomics in the near future.
Using quantitative PCR analysis and DNA sequencing, we provide evidence for the presence of rat lungworm (Angiostrongylus cantonensis) in Oklahoma, USA, and identified a potentially novel rat host (Sigmodon hispidus). Our results indicate a geographic range expansion for this medically and ecologically relevant parasite in North America.
A B S T R A C TWildlife crime continues unabated contributing to the extinction or near extinction of many plant and animal species. Species identification is a key tool in the enforcement of national legislation. If no morphology exists, comparison of DNA sequences generated from a mitochondrial gene are compared to those on a reference database, commonly GenBank. Sequences up-loaded to GenBank are unregulated and can lead to uncertainty with the adequacy of this DNA sequence repository for identification in a forensic context. We propose the establishment of ForCyt as a fully-regulated database of species that are commonly encountered in forensic investigations. The establishment of ForCyt will allow confidence in future species identification; something that is an absolute requirement to ensure high quality forensic science.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.